Thursday, October 31, 2024

A Review of Rehabilitation Devices to Promote Upper Limb Function Following Stroke

 We don't need more lazy reviews of what's out there! Tell us what WORKS TO GET US 100% RECOVERED! Are you that blitheringly stupid you don't understand what survivors want? 

Oops, I'm not playing by the polite rules of Dale Carnegie,  'How to Win Friends and Influence People'. 

Telling supposedly smart stroke medical persons they know nothing about stroke is a no-no even if it is true. 

Politeness will never solve anything in stroke. Yes, I'm a bomb thrower and proud of it. Someday a stroke 'leader' will try to ream me out for making them look bad by being truthful, I look forward to that day. 

A Review of Rehabilitation Devices to Promote Upper Limb Function Following Stroke

Jacob Brackenridge 1 , Lynley V. Bradnam 2,3 , Sheila Lennon 2 , John J. Costi 1 and David A. Hobbs 1, * 1 Medical Device Research Institute, School of Computer Science, Engineering and Mathematics, Flinders University, Adelaide, South Australia, Australia; 2 Discipline of Physiotherapy, School of Health Sciences, Flinders University, Adelaide, South Australia, Australia; 3 Discipline of Physiotherapy, Graduate School of Health, University of Technology, Sydney, NSW, Australia 

Abstract: 


Background: 

Stroke is a major contributor to the reduced ability to carry out activities of daily living (ADL) post cerebral infarct. There has been a major focus on understanding and improving rehabilitation interventions in order to target cortical neural plasticity to support recovery of upper limb function. Conventional therapies delivered by therapists have been combined with the application of mechanical and robotic devices to provide controlled and assisted movement of the paretic upper limb. The ability to provide greater levels of intensity and reproducible repetitive task practice through the application of intervention devices are key mechanisms to support rehabilitation efficacy. 

Results: 

This review of literature published in the last decade identified 141 robotic or mechanical devices. These devices have been characterised and assessed by their individual characteristics to provide a review of current trends in rehabilitation device interventions. Correlation of factors identified to promote positive targeted neural plasticity has raised questions over the benefits of expensive robotic devices over simple mechanical ones. 

Conclusion: 

A mechanical device with appropriate functionality to support the promotion of neural plasticity after stroke may provide(stop using weasel words) an effective solution for both patient recovery and to stimulate further research into the use of medical devices in stroke rehabilitation. These findings indicate that a focus on simple, cost effective and efficacious intervention solutions may improve rehabilitation outcomes.

No comments:

Post a Comment