Hey, in vivo means while living, so following this they can map individual neuron synapses. This is absolutely necessary for researchers to figure out exactly what occurs in neuroplasticity and neurogenesis. I know I shouldn't presume to tell the medical gods what to do and where to go but they are lost as far as stroke rehabilitation is concerned.
http://www.nature.com/nature/journal/vaop/ncurrent/full/nature10193.html
The individual functional properties and spatial arrangement of afferent synaptic inputs on dendrites have a critical role in the processing of information by neurons in the mammalian brain1, 2, 3, 4. Although recent work has identified visually-evoked local dendritic calcium signals in the rodent visual cortex5, sensory-evoked signalling on the level of dendritic spines, corresponding to individual afferent excitatory synapses, remains unexplored6. Here we used a new variant of high-resolution two-photon imaging7 to detect sensory-evoked calcium transients in single dendritic spines of mouse cortical neurons in vivo. Calcium signals evoked by sound stimulation required the activation of NMDA (N-methyl-D-aspartate) receptors. Active spines are widely distributed on basal and apical dendrites and pure-tone stimulation at different frequencies revealed both narrowly and widely tuned spines. Notably, spines tuned for different frequencies were highly interspersed on the same dendrites: even neighbouring spines were mostly tuned to different frequencies. Thus, our results demonstrate that NMDA-receptor-dependent single-spine synaptic inputs to the same dendrite are highly heterogeneous. Furthermore, our study opens the way for in vivo mapping of functionally defined afferent sensory inputs with single-synapse resolution.
No comments:
Post a Comment