Wednesday, January 18, 2012

Design and evaluation of a low-cost instrumented glove for hand function assessment

If this team really wanted to be helpful they would put their assessments together with one of the various hand orthotics and propose a therapy protocol. Assessments seem like a useful item but more important is actual protocols.
http://www.jneuroengrehab.com/content/9/1/2/abstract

Abstract (provisional)

Background

The evaluation of hand function impairment following a neurological disorder (stroke and cervical spinal cord injury) requires sensitive, reliable and clinically meaningful assessment tools. Clinical performance measures of hand function mainly focus on the accomplishment of activities of daily living (ADL), typically rather complex tasks assessed by a gross ordinal rating, while the motor performance (i.e. kinematics) is less detailed. The goal of this study was to develop a low-cost instrumented glove to capture details in grasping, feasible for the assessment of hand function in clinical practice and rehabilitation settings.

Methods

Different sensor types were tested for output signal stability over time by measuring the signal drift of their step responses. A system that converted sensor output voltages into angles based on pre-measured curves was implemented. Furthermore, the voltage supply of each sensor signal conditioning circuit was increased to enhance the sensor resolution. The repeatability of finger bending trajectories, recorded during the performance of three ADL-based tasks, was established using the intraclass correlation coefficient (ICC). Moreover, the accuracy of the glove was evaluated by determining the agreement between angles measured with the embedded sensors and angles measured by traditional goniometry. In addition, the feasibility of the glove was tested in four patients with a pathological hand function caused by a cervical spinal cord injury (cSCI).

Results

A sensor type that displayed a stable output signal over time was identified, and a high sensor resolution of 0.5 degrees was obtained. The evaluation of the glove's reliability yielded high ICC values (0.84 to 0.92) with an accuracy error of about +/- 5 degrees. Feasibility testing revealed that the glove was sensitive to distinguish different levels of hand function impairment in cSCI patients.

Conclusions

The device satisfied the desired system requirements in terms of low cost, stable sensor signal over time, full finger-flexion range of motion tracking and capability to monitor all three joints of one finger. The developed rapid calibration system for easy use (high feasibility) and excellent psychometric properties (i.e. reliability and validity) qualify the device for the assessment of hand function in clinical practice and rehabilitation settings.

No comments:

Post a Comment