This paragraph shows how much work still needs to be done, I wonder what they did to bring attention to this problem. 8 pages of helping you understand why you are having a hell of a time regaining normal walking. No real answers.
In spite of rehabilitative efforts, approximately 35% of
survivors with initial paralysis of the lower extremity do not
regain useful walking function, and 25% of all survivors are
unable to walk without full physical assistance before
hospital discharge (Hendricks et al., 2002).
Based on this all therapists should agitate for a research program to find out why recovery % is so pathetic.
http://physiodatabase.com/wp-content/uploads/2012/03/gaitmechanicsinstroke.pdf
Summary The role of the brain in post-stroke gait is not understood properly, although the ability to walk becomes impaired in more than 80% of post-stroke patients. Most, however, regain some ability to walk with either limited mobility or inefficient, asymmetrical or unsafe gait. Conventional intervention focuses on support of weak muscles or body part by use of foot orthosis and walking aids. This review provides an overview of available evidence of neurokinesiology & neurophysiology of normal and post-stroke gait. The role of the spinal cord has been explored, more in animals than humans. Mammalian locomotion is based on a rhythmic, “pacemaker” activity of the spinal stepping generators. Bipedal human locomotion is different from quadripedal animal locomotion. However, knowledge derived from the spinal cord investigation of animals, is being applied for management of human gait dysfunction. The potential role of the brain is now recognized in the independent activation of muscles during walking. The brain modifies the gait pattern during the complex demands of daily activities.
Though the exact role of the motor cortex in control of gait is unclear, available evidence may be applied to gait rehabilitation of post-stroke patients.
No comments:
Post a Comment