Friday, July 13, 2012

Cerebral blood flow regulation systematically decreases after a stroke

So have they thought that maybe pericytes haven't opened up yet?
http://oc1dean.blogspot.com/2011/09/restoring-capillary-blood-flow-after.html
You can easily verify if this hypothesis is correct or not by checking if these problems occur by ischemic vs. hemorrhagic stroke.
http://brainslab.wordpress.com/2012/07/13/38975849/
In everyday life, your muscles, metabolism, and nervous system work together to ensure that your cerebral blood flow meets the metabolic needs of your various brain regions. So if you are trying to scrutinize an impressionist painting, your body will likely relocate more blood flow to your visual cortex.
Following a stroke, this cerebral blood flow regulation is impaired. But, the degree and spread of the impairment is unknown. To investigate this, Hu et al. measured systemic blood pressure (BP) and used a transcranial doppler to measure cerebral blood flow velocity (BFV) at the same time.
In their model, better regulation of cerebral blood flow corresponds to a sharper phase shift between blood pressure (BP) and cerebral blood flow velocity (BFV). Individuals with the highest score of a 9 on their autoregulation index (ARI) have more regulation than those with the lowest score of 0, which corresponds to no phase shift.
When they compared patients who had experienced MCA infarcts (a common type of stroke) and healthy controls, they found that stroke patients had significantly less phase coupling between blood pressure and cerebral blood flow. This effect was pronounced over a wide range of blood pressure oscillation frequencies.
Given enough time and the right conditions, can the body repair its ability to regulate cerebral blood flow following a stroke? When the researchers examined this, they found no statistically significant difference between the BFV-BP phase difference and time since stroke.
But, that doesn’t mean that there’s a statistically significant lack of difference. So, further longitudinal studies will be needed to help clarify whether, in certain people in certain environments, the brain improves its cerebral regulation following stroke.

Reference
Hu K, Lo M-T, Peng C-K, Liu Y, Novak V (2012) A Nonlinear Dynamic Approach Reveals a Long-Term Stroke Effect on Cerebral Blood Flow Regulation at Multiple Time Scales. PLoS Comput Biol 8(7): e1002601. doi:10.1371/journal.pcbi.1002601

No comments:

Post a Comment