Friday, March 29, 2013

Ebselen Alters Mitochondrial Physiology and Reduces Viability of Rat Hippocampal Astrocytes

We really don't want to reduce astrocyte viability so get your researcher looking into this.
A 1998 article suggested that ebselen might be a good neuroprotective drug.  Your doctor needs to reconcile the deleterious contradictions between these 2 articles.
http://online.liebertpub.com/doi/abs/10.1089/dna.2012.1939

ABSTRACT

The seleno-organic compound and radical scavenger ebselen (2-phenyl-1,2-benzisoselenazol-3(2H)-one) have been extensively employed as an anti-inflammatory and neuroprotective compound. However, its glutathione peroxidase activity at the expense of cellular thiols groups could underlie certain deleterious actions of the compound on cell physiology. In this study, we have analyzed the effect of ebselen on rat hippocampal astrocytes in culture. Cellular viability, the intracellular free-Ca2+ concentration ([Ca2+]c), the mitochondrial free-Ca2+ concentration ([Ca2+]m), and mitochondrial membrane potential (ψm) were analyzed. The caspase-3 activity was also assayed. Our results show that cell viability was reduced by treatment of cells with ebselen, depending on the concentration employed. In the presence of ebselen, we observed an initial transient increase in [Ca2+]c that was then followed by a progressive increase to an elevated plateau. We also observed a transient increase in [Ca2+]m in the presence of ebselen that returned toward a value over the prestimulation level. The compound induced depolarization of ψm and altered the permeability of the mitochondrial membrane. Additionally, a disruption of the mitochondrial network was observed. Finally, we did not detect changes in caspase-3 activation in response to ebselen treatment. Collectively, these data support the likelihood of ebselen, depending on the concentration employed, reduces viability of rat hippocampal astrocytes via its action on the mitochondrial activity. These may be early effects that do not involve caspase-3 activation. We conclude that, depending on the concentration used, ebselen might exert deleterious actions on astrocyte physiology that could compromise cell function.

No comments:

Post a Comment