Friday, October 24, 2014

Cognitive control in the self-regulation of physical activity and sedentary behavior

Your doctor should be an expert at motivating you to get off your butt and exercise. Because unless YOU do the work you won't recover very well.
This might help your doctor create a stroke protocol on motivation. You can always hope your doctor is trainable.

Cognitive control in the self-regulation of physical activity and sedentary behavior


Jude Buckley1, Jason D. Cohen2, Arthur F. Kramer2,3, Edward McAuley2,3 and Sean P. Mullen2,3*

  • 1School of Psychology, University of Auckland, Auckland, New Zealand
  • 2Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, IL, USA
  • 3Beckman Institute for Advanced Science and Technology, Urbana, IL, USA
Cognitive control of physical activity and sedentary behavior is receiving increased attention in the neuroscientific and behavioral medicine literature as a means of better understanding and improving the self-regulation of physical activity. Enhancing individuals’ cognitive control capacities may provide a means to increase physical activity and reduce sedentary behavior. First, this paper reviews emerging evidence of the antecedence of cognitive control abilities in successful self-regulation of physical activity, and in precipitating self-regulation failure that predisposes to sedentary behavior. We then highlight the brain networks that may underpin the cognitive control and self-regulation of physical activity, including the default mode network, prefrontal cortical networks and brain regions and pathways associated with reward. We then discuss research on cognitive training interventions that document improved cognitive control and that suggest promise of influencing physical activity regulation. Key cognitive training components likely to be the most effective at improving self-regulation are also highlighted. The review concludes with suggestions for future research.
For nearly half of a century, researchers have been trying to uncover how to motivate people to become more physically active (Trost et al., 2002; Schutzer and Graves, 2004; Buckworth et al., 2013) and, recently, more effort has been made to understand how to motivate people to be less sedentary (Hamilton et al., 2008). Despite resources devoted to these efforts, more than 30% of the world’s population remains physically inactive (Hallal et al., 2012) and, on average, people are sitting for more than 300 min/day (Bauman et al., 2011). Our understanding of the regulation of these behaviors has advanced, but these prevalence rates suggest that our knowledge of physical activity and sedentary behavior remains incomplete. Research supports theoretical proposals that health behavior is dependent, in part, on self-regulation capacities (Bandura, 1986; De Ridder and de Wit, 2006), but only recently has research attention been directed toward the preceding factors of self-regulation that influence physical activity and sedentary behavior.
Recent theory (e.g., Temporal Self-Regulation Theory; Hall and Fong, 2007, 2010, 2013) and evidence suggest that the relation between physical activity and cognitive control is reciprocal (Daly et al., 2013). Most research has focused on the beneficial effects of regular physical activity on executive functions-the set of neural processes that define cognitive control. Considerable evidence shows that regular physical activity is associated with enhanced cognitive functions, including attention, processing speed, task switching, inhibition of prepotent responses and declarative memory (for reviews see Colcombe and Kramer, 2003; Smith et al., 2010; Guiney and Machado, 2013; McAuley et al., 2013). Recent research demonstrates a dose-response relationship between fitness and spatial memory (Erickson et al., 2011), however the long-term effects of physical activity on working memory have been less consistent (Smith et al., 2010).
Positive physical activity effects on executive function have been found in children for both acute and regular activity (Chang et al., 2012; Hillman et al., in press). For example, findings from a 9-month randomized controlled trial in 221 prepubertal children attending an afterschool physical activity program (vs. a wait-list control group), showed improvements in fitness (VO2peak), cognitive control, and neuroelectrical activity (P3-ERP) during tasks that required significantly more cognitive control (Hillman et al., in press). In addition, a modest dose-response effect of program attendance on cognitive control measures was also found. Improvements in cognitive function are not always observed in older adults (Angevaren et al., 2008) or in children (Janssen et al., 2014) involved in physical activity programs. These findings suggest that the effects of physical activity on cognitive function may depend on the particular cognitive function being assessed. Taken together, this research suggests that physical activity training can enhance cognitive control abilities. The effects of physical activity on cognitive control appear to be underpinned by a variety of brain processes including: increased hippocampal volume, increased gray matter density in the prefrontal cortex (PFC), upregulation of neurotrophins and greater microvascular density (for a review see Voss et al., 2013). Much less is understood about the influence of cognitive control on physical activity but emerging evidence suggests that executive functions play an antecedent role in effective self-regulation of physical activity (Hall et al., 2008; Riggs et al., 2010; McAuley et al., 2011; Daly et al., 2013; Pentz and Riggs, 2013; Best et al., 2014).
The goals of this paper are (1) to review emerging evidence of the antecedence of cognitive control abilities in enabling successful self-regulation for physical activity, and in precipitating self-regulation failures that predispose individuals to remain sedentary; (2) to highlight neural networks that may underlie the cognitive control of physical activity and sedentary behavior; and (3) to review emerging research on training effects on cognitive and physical functioning and summarize components of training that may produce positive cognitive outcomes associated with increased physical activity engagement.

More at link.

No comments:

Post a Comment