Monday, December 14, 2015

Lesion Characteristics of Individuals With Upper Limb Spasticity After Stroke

This analysis should have been done decades ago.
http://nnr.sagepub.com/content/30/1/63?etoc
  1. Daniel K. Cheung1,2,3
  2. Seth A. Climans4
  3. Sandra E. Black, MD, FRCP1,2,3,5
  4. Fuqiang Gao, MD2
  5. Gregory M. Szilagyi2,3
  6. George Mochizuki, PhD1,2,3
  1. 1Heart and Stroke Foundation Canadian Partnership for Stroke Recovery, Toronto, Ontario, Canada
  2. 2Sunnybrook Research Institute, Toronto, Ontario, Canada
  3. 3University of Toronto, Toronto, Ontario, Canada
  4. 4Western University, London, Ontario, Canada
  5. 5Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
  1. George Mochizuki, Sunnybrook Research Institute, 2075 Bayview Avenue, Rm M6-178, Toronto, Ontario, Canada M4N3M5. Email: george.mochizuki@sunnybrook.ca

Abstract

This study explores the relationship between lesion location and volume and upper limb spasticity after stroke. Ninety-seven stroke patients (51 with spasticity) were included in the analysis (age = 67.5 ± 13.3 years, 57 males). Lesions were traced from computed tomography and magnetic resonance images and coregistered to a symmetrical brain template. Lesion overlays from the nonspastic group were subtracted from the spastic group to determine the regions of the brain more commonly lesioned in spastic patients. Similar analysis was performed across groups of participants whose upper limb (elbow or wrist) Modified Ashworth Scale (MAS) score ranged from 1 (mild) to 4 (severe). Following subtraction analysis and Fisher’s exact test, the putamen was identified as the area most frequently lesioned in individuals with spasticity. More severe spasticity was associated with a higher lesion volume. This study establishes the neuroanatomical correlates of poststroke spasticity and describes the relationship between lesion characteristics and the severity of spasticity using mixed brain imaging modalities, including computed tomography imaging, which is more readily available to clinicians. Understanding the association between lesion location and volume with the development and severity of spasticity is an important first step toward predicting the development of spasticity after stroke. Such information could inform the implementation of intervention strategies during the recovery process to minimize the extent of impairment. (There are no interventions for spasticity. What the hell are you talking about?)

No comments:

Post a Comment