Friday, August 5, 2016

Inhibition of Tnf-α R1 signaling can rescue functional cortical plasticity impaired in early post-stroke period

TNF is what Dr. Tobinick is supposedly treating using his proprietary method of injecting etanercept. Dr. Tobinick could have solved this TNF question years ago if he had only actually run clinical tests on etanercept.

Inhibition of Tnf-α R1 signaling can rescue functional cortical plasticity impaired in early post-stroke period 


Abstract

Tumor necrosis factor-α (TNF-α) is one of the key players in stroke progression and can interfere with brain functioning. We previously documented an impairment of experience-dependent plasticity in the cortex neighboring the stroke-induced lesion, which was accompanied with an upregulation of Tnf-α level in the brain of ischemic mice 1 week after the stroke. Because TNF receptor 1 (TnfR1) signaling is believed to be a major mediator of the cytotoxicity of Tnf-α through activation of caspases, we used an anti-inflammatory intervention aimed at Tnf-α R1 pathway, in order to try to attenuate the detrimental effect of post-stroke inflammation, and investigated if this will be effective in protecting plasticity in the infarct proximity. Aged mice (12–14 months) were subjected to the photothrombotic stroke localized near somatosensory cortex, and immediately after ischemia sensory deprivation was introduced to induce plasticity. Soluble TNF-α R1 (sTNF-α R1), which competed for TNF-α with receptors localized in the brain, was delivered chronically directly into the brain tissue for the whole period of deprivation using ALZET Micro-Osmotic pumps. We have shown that such approach undertaken simultaneously with the stroke reduced the level of TNF-α in the peri-ischemic tissue and was successful in preserving the post-stroke deprivation-induced brain plasticity.

No comments:

Post a Comment