Your stroke hospital should be waiting with baited breath for this to become available. Finally survivors can get objective measurements of where their muscles are working incorrectly. From that you therapist can pick the correct stroke protocol to resolve those deficits. I know this is pie in the sky thinking but it is what should be occurring to get all stroke survivors to 100% recovery. If that is not your stroke hospitals goal then you need to completely remove all the personnel and start over again with people who believe in total recovery and can plan a way to get there. The current crop of stroke medical professionals has accepted failure so readily I don't think they can be retrained.
http://www.alphagalileo.org/ViewItem.aspx?ItemId=170493&CultureCode=en
From now on it will be possible to accurately monitor and analyse how
stroke patients move during everyday life. This involves the use of a
new suit fitted with 41 sensors, plus the infrastructure needed to
transmit, store and process all of the data collected. This technology
and information will make it possible to improve the rehabilitation
process and cut healthcare costs. Bart Klaassen developed the system
together with an international team of engineers and healthcare
professionals. He will defend his thesis (which is based on this
research) on 30 November, at the University of Twente. “The technology
is finally ready.”
As many as 33 million people(Really!, the standard number bandied about is always 15 million) throughout the world suffered strokes in
2010. With our aging population, it seems logical to expect a further
increase in these numbers in the upcoming years. Stroke survivors often
have to cope with physical limitations. They generally take part in
rehabilitation programmes, which are intended to help patients function
as effectively as possible in their everyday lives. In practice,
however, rehabilitation mainly takes place in rehabilitation clinics.
Not enough is known about how, after completing such programmes,
patients cope with their limitations in a daily life setting. Yet it is
known that a better understanding of how these people function in
everyday life could lead to more effective rehabilitation, at a lower
cost. In the context of a European FP7 research project, Bart Klaassen
(a PhD student at the University of Twente) and a large team of
researchers developed a system for accurately measuring and modelling
these patients’ movement quality, and for transmitting the relevant
information to the therapist. This project is a world first. Never
before have researchers used systems like this to analyse these
patients’ every movement in a daily life setting. “There has long been a
great need for systems like this, but the technology simply was not
ready”, says Klaassen. “That is now changing rapidly, thanks to rapid
developments in the fields of battery technology, wearables, smart
e-textiles and big data analysis.”
41 sensors
Together with a large consortium of engineers and healthcare
professionals, Bart Klaassen developed the INTERACTION System. This
consists of a suit that study subjects had to wear under their clothing
for three months, as well as the entire technical infrastructure needed
to transmit, store and process the data collected. The suit contains no
less than 41 sensors, including sensors on a large number of body
segments, sensors that measure muscle strength, stretch sensors on the
back and the hands, and force sensors in the soles of the shoes. In
addition, the suit is equipped with a portable transmitter that can
transmit all of the information gathered through the internet to data
processing servers at the University of Twente.
In the course of his PhD research, Klaassen showed that the system
works well in practice. “We have been able to demonstrate that all the
information is transmitted successfully, that this process is very
efficient, and much more besides. We have succeeded in modelling all of
the relevant movements, and in cleaning up the data that is relevant for
the therapist by filtering out the rest.Our project has delivered new
techniques and methods that can be used to monitor patients at home for
extended periods of time, and to identify any differences with
structured clinical measurements. We are currently engaged in further
research to obtain final verification that these methods are indeed an
ideal way of supervising rehabilitation.”
When developing this system, Bart Klaassen and the team adopted a
user-centred design approach. This enabled them to continually
incorporate feedback from the patients involved into the development of
the system. Other relevant parties – such as insurance companies and
healthcare professionals – were also involved in the design and research
work at an early stage.
PhD defence
As part of his PhD research, Klaassen worked closely with what he
calls ‘world leaders in the field of rehabilitation technology’. These
included Cereneo A.G. (a Swiss rehabilitation centre), the Department of
Neurology at the University Hospital of Zurich in Switzerland and
Roessingh Research and Development BV. Bart Klaassen conducted his
research at the Biomedical Signals and Systems Department in the
University of Twente’s MIRA research institute. Klaassen will defend his
PhD thesis in the Prof. G. van Berkhoff hall, in the Waaier Building on
the University of Twente campus at 16:30 on Wednesday 30 November. Bart
Klaassen is currently working as a coordinator at the University of
Twente’s tech4People BMS lab.
Good luck getting this garment on a paralyzed and perhaps stiff and painful hemiplegic arm. I get so irritated when new devices are modeled on normal people as proof of concept.
ReplyDelete