Tuesday, April 18, 2017

Quantification of task-dependent cortical activation evoked by robotic continuous wrist joint manipulation in chronic hemiparetic stroke

Nothing useful here. A sensory protocol should have been written 16 years ago after the publication of  the book, 'Sensory Re-Education of the Hand After Stroke' in 2001 by Margaret Yekutiel.  Better sensation leads to better motor recovery.  What the hell will it take to write a simple fucking protocol on sensation and motor recovery? Is everyone in stroke that goddamned lazy AND incompetent?

  • Martijn P. VlaarEmail author,
  • Teodoro Solis-Escalante,
  • Julius P. A. Dewald,
  • Erwin E. H. van Wegen,
  • Alfred C. Schouten,
  • Gert Kwakkel,
  • Frans C. T. van der Helm and
  • on behalf of the 4D-EEG consortium
Contributed equally
Journal of NeuroEngineering and Rehabilitation201714:30
DOI: 10.1186/s12984-017-0240-3
Received: 17 November 2016
Accepted: 30 March 2017
Published: 17 April 2017

Abstract

Background

Cortical damage after stroke can drastically impair sensory and motor function of the upper limb, affecting the execution of activities of daily living and quality of life. Motor impairment after stroke has been thoroughly studied, however sensory impairment and its relation to movement control has received less attention. Integrity of the somatosensory system is essential for feedback control of human movement, and compromised integrity due to stroke has been linked to sensory impairment.

Methods

The goal of this study is to assess the integrity of the somatosensory system in individuals with chronic hemiparetic stroke with different levels of sensory impairment, through a combination of robotic joint manipulation and high-density electroencephalogram (EEG). A robotic wrist manipulator applied continuous periodic disturbances to the affected limb, providing somatosensory (proprioceptive and tactile) stimulation while challenging task execution. The integrity of the somatosensory system was evaluated during passive and active tasks, defined as ‘relaxed wrist’ and ‘maintaining 20% maximum wrist flexion’, respectively. The evoked cortical responses in the EEG were quantified using the power in the averaged responses and their signal-to-noise ratio.

Results

Thirty individuals with chronic hemiparetic stroke and ten unimpaired individuals without stroke participated in this study. Participants with stroke were classified as having severe, mild, or no sensory impairment, based on the Erasmus modification of the Nottingham Sensory Assessment. Under passive conditions, wrist manipulation resulted in contralateral cortical responses in unimpaired and chronic stroke participants with mild and no sensory impairment. In participants with severe sensory impairment the cortical responses were strongly reduced in amplitude, which related to anatomical damage. Under active conditions, participants with mild sensory impairment showed reduced responses compared to the passive condition, whereas unimpaired and chronic stroke participants without sensory impairment did not show this reduction.

Conclusions

Robotic continuous joint manipulation allows studying somatosensory cortical evoked responses during the execution of meaningful upper limb control tasks. Using such an approach it is possible to quantitatively assess the integrity of sensory pathways; in the context of movement control this provides additional information required to develop more effective neurorehabilitation therapies.

No comments:

Post a Comment