Wednesday, September 20, 2017

The Combined Effects of Adaptive Control and Virtual Reality on Robot-Assisted Fine Hand Motion Rehabilitation in Chronic Stroke Patients: A Case Study

Once again NO protocols.  You are on your own again to find this out.
http://www.strokejournal.org/article/S1052-3057(17)30437-8/fulltext
,
,
,
,
Universality of Wollongong, Northfields Ave, Wollongong, NSW 2522, Australia
Robot-assisted therapy is regarded as an effective and reliable method for the delivery of highly repetitive training that is needed to trigger neuroplasticity following a stroke. However, the lack of fully adaptive assist-as-needed control of the robotic devices and an inadequate immersive virtual environment that can promote active participation during training are obstacles hindering the achievement of better training results with fewer training sessions required. This study thus focuses on these research gaps by combining these 2 key components into a rehabilitation system, with special attention on the rehabilitation of fine hand motion skills. The effectiveness of the proposed system is tested by conducting clinical trials on a chronic stroke patient and verified through clinical evaluation methods by measuring the key kinematic features such as active range of motion (ROM), finger strength, and velocity. By comparing the pretraining and post-training results, the study demonstrates that the proposed method can further enhance the effectiveness of fine hand motion rehabilitation training by improving finger ROM, strength, and coordination.

To access this article, please choose from the options below

Purchase access to this article

Claim Access

If you are a current subscriber with Society Membership or an Account Number, claim your access now.

Subscribe to this title

Purchase a subscription to gain access to this and all other articles in this journal.

Institutional Access

Visit ScienceDirect to see if you have access via your institution.

No comments:

Post a Comment