Sunday, June 17, 2018

Movement Sonification in Stroke Rehabilitation

Sonification has been written about for 5 years. It is about time for our fucking failures of stroke associations to step up to the plate and write a stroke protocol on this. I can guarantee this won't occur.

Movement Sonification in Stroke Rehabilitation

  • 1Institute of Sports Science, Leibniz University Hannover, Hannover, Germany
  • 2Schön Klinik Bad Aibling, Bad Aibling, Germany
  • 3German Center for Vertigo and Balance Disorders, Ludwig-Maximilians University of Munich, Munich, Germany
  • 4Department of Sport and Health Sciences, Technical University Munich, Human Movement Science, Munich, Germany
  • 5Institute of Microelectronic Systems, Leibniz University Hannover, Hannover, Germany
Stroke often affects arm functions and thus impairs patients' daily activities. Recently, several studies have shown that additional movement acoustics can enhance motor perception and motor control(But with no protocols written and distributed they were useless, just like this one will be useless). Therefore, a new method has been developed that allows providing auditory feedback about arm movement trajectories in real-time for motor rehabilitation after stroke. The present article describes the study protocol for a randomized, controlled, examiner, and patient blinded superiority trial (German Clinical Trials Register, www.drks.de, DRKS00011419), in which the method will be applied to 13 subacute stroke patients with hemiparesis during 12 sessions of 30 min each as additional feedback during the regular movement therapy. As primary outcome, a significant pre-post-change in the Box and Block Test is expected that exceeds the performance increase of 13 patients who will be provided with sham-acoustics. Possible limitations of the method as well as the study design are discussed.

Introduction

Background

Stroke is the second most common cause of death among the neurological disorders. The great majority of patients who survive a stroke have to rely on health care support afterwards (1). Sensory and motor impairments can lead to dramatic limitations of everyday motor skills and temporary or permanent disability. Most often arm functions are impaired and hamper patients during activities of daily living (2). Hemiparesis, for example, affects spatial and temporal arm motor control and results in disturbed movement trajectories, lower movement amplitudes and enhanced movement times (3). Therefore, one important goal of motor rehabilitation is the improvement of arm functions. Some therapies like the Arm Ability Training (4) or the Constraint Induced Movement Therapy (5) predominantly focus on the improvement of the motor components of the arm movement system. However, Bastian points out that efficacy of stroke rehabilitation might be improved by methods that combine perceptual- and motor oriented approaches (6). A recent study with healthy participants showed a higher efficacy of a sensorimotor compared to a purely motor orientated approach, accordingly, although both approaches address the same adaptation mechanisms (7). An example for a perception-oriented approach for stroke rehabilitation is Ramachandran's mirror visual feedback method. It seems to reestablish congruency between motor commands and visual feedback in patients that watch a mirror image of the unimpaired arm during bilateral movements. Some of these patients report not only to see the impaired arm, but also to feel it moving. A probable explanation is that mirror visual feedback revives temporarily inactive motor neurons and/or ipsilateral corticospinal pathways (8).
As alternative to vision-oriented approaches, a specific feature of recently developed methods is the implementation of auditory signals and sounds to generate additional perceptual information about movement quantities and qualities (9, 10). In particular, music has been shown to be an efficient add-on in stroke therapy: Schneider et al. (11) showed that a music based arm therapy can outperform highly established approaches like the constraint induced movement therapy. Chen et al. (12) reported from a proof of concept case study on five stroke patients that rhythmic auditory cueing enhanced movement speed. Furthermore, two-state continuous musical feedback increased elbow extension as well as shoulder flexion and reduced compensatory trunk movements. Growing evidence suggests that music-supported therapy is superior to conventional physiotherapy without music, probably because it acts on multiple levels and addresses motor, cognitive, and emotional mechanisms (13).
Furthermore, some studies indicate beneficial effects of continuous auditory feedback for movement rehabilitation after stroke. For example, Maulucci and Eckhouse (14) reported that stroke patients relearned functional movement paths faster when they were provided with auditory feedback about spatial deviations from reach paths performed by healthy persons. Secoli et al. (15) found that auditory feedback improved performance in a movement tracking task performed during robot-assisted arm training in patients with chronic left hemiparesis. However, other results were equivocal: According to Robertson et al. (16), feedback about hand orientation during reaching seems to be beneficial for patients with right hemisphere lesions, but detrimental for patients with left hemisphere lesions. Based on a systematic literature review, Molier and colleagues see a possible benefit of performance feedback and augmented auditory feedback, although the determinants for their efficacy remain largely unknown (17).
Since stroke often impairs somatosensation (18, 19), recovery of arm functions might benefit from methods that support proprioception, particularly. Hereto, Sihvonen et al. (13) argue that music-supported therapy might be effective, again, because patients generate an internal expectation about when the next note is going to be heard and thereby improve their movement timing. However, by considering proprioception as integrated percept of multiple sensory streams from multiple receptors which is experienced as motion and position sense, further methods might address specific proprioceptive mechanisms and thereby support the relearning of functional movement patterns after stroke. The method of movement sonification might have this potential. Movement sonification represents a concept for mapping movement parameters to sound in order to create novel perceptual streams congruent to the time course of kinematic or dynamic movement parameters (20). This method differs conceptually from providing feedback on performance errors, because it allows to design artificial perceptual streams structurally equivalent to perceptual streams from other modalities. It has been shown that the amendment of visual motion information by movement acoustics amplifies the activity of multimodal integration areas in the brains of observers and furthermore, activates the basal-ganglia-fronto-cortical motor loop (21, 22). Accordingly, movement sonification has been shown to support learning (23, 24) and adaptation (25) of fine motor skills, (re)learning of arm joint coordination patterns (26) and acquisition of gross motor skills (27, 28) in healthy persons. In deafferented patients, it can substitute proprioception (29). Studies on immediate effects of movement sonification on movement pattern recognition, movement synchronization and own-other discrimination (3033) indicate that movement sonification unfolds its potentials on perception and action by linking to internal movement representations.
Much more at link. 

No comments:

Post a Comment