Saturday, June 8, 2019

Blood-brain barrier chip created with stem cells expands potential for personalized medicine

With ANY BRAINS AT ALL in stroke leadership, they would immediately start research using this to solve the blood brain barrier issue from here. 

Inflammatory action leaking through the blood brain barrier May 2013. You can see from the dates that everyone in the stroke medical world has been incompetent for 6 years already. NO leadership. NO strategy.

 

Blood-brain barrier chip created with stem cells expands potential for personalized medicine

An Organ-Chip used in the study to create a blood-brain barrier (BBB).
The brain is a complex part of the human body that allows for the formation of thoughts and consciousness. In many ways it is the essence of who we are as individuals. Because of its importance, our bodies have developed various layers of protection around this vital organ, one of which is called the blood-brain barrier (BBB).
The BBB is a thin border of various cell types around the brain that regulate what can enter the brain tissue through the bloodstream. Its primary purpose is to prevent toxins and other unwanted substances from entering the brain and damaging it. Unfortunately this barrier can also prevent helpful medications, designed to fix problems, from reaching the brain.
Several brain disorders, such as Amyotrophic Lateral Sclerosis (ALS – also known as Lou Gehrig’s disease), Parkinson’s Disease (PD), and Huntington’s Disease (HD) have been linked to defective BBBs that keep out critical biomolecules needed for healthy brain activity.
In a CIRM-funded study, a team at Cedars-Sinai Medical Center created a BBB through the use of stem cells and an Organ-Chip made from induced pluripotent stem cells (iPSCs). These are a specific type of stem cells that can turn into any type of cell in the body and can be generated from a person’s own cells. In this study, iPSCs were created from adult blood samples and used to make the neurons and other supporting cells that make up the BBB. These cells were then placed inside an Organ-Chip which recreates the environment that cells normally experience within the human body.
Inside the 3-D Organ-Chip, the cells were able to form a BBB that functions as it does in the body, with the ability to block entry of certain drugs. Most notably, when the BBB was generated from cell samples of patients with HD, the BBB malfunctioned in the same way that it does in patients with the disease.
These findings expand the potential for personalized medicine for various brain disorders linked to problems in the BBB. In a press release, Dr. Clive Svendsen, director of the Cedars-Sinai Board of Governors Regenerative Medicine Institute and senior author of the study, was quoted as saying,
“The study’s findings open a promising pathway for precision medicine. The possibility of using a patient-specific, multicellular model of a blood barrier on a chip represents a new standard for developing predictive, personalized medicine.”
The full results of the study were published in the scientific journal Cell Stem Cell.

No comments:

Post a Comment