Sunday, February 28, 2021

Predicting neuroimaging eligibility for extended-window endovascular thrombectomy

 So did that salvageable penumbra get 100% salvaged? If you didn't measure that, you aren't doing your research correctly.

Predicting neuroimaging eligibility for extended-window endovascular thrombectomy

Restricted access

Purchase Now

USD  $45.00

OBJECTIVE

Endovascular thrombectomy (EVT) and tissue plasminogen activator (tPA) are effective ischemic stroke treatments in the initial treatment window. In the extended treatment window, these treatments may offer benefit, but CT and MR perfusion may be necessary to determine patient eligibility. Many hospitals do not have access to advanced imaging tools or EVT capability, and further patient care would require transfer to a facility with these capabilities. To assist transfer decisions, the authors developed risk indices that could identify patients eligible for extended-window EVT or tPA.

METHODS

The authors retrospectively identified stroke patients who had concurrent CTA and perfusion and evaluated three potential outcomes that would suggest a benefit from patient transfer. The first outcome was large-vessel occlusion (LVO) and target mismatch (TM) in patients 5–23 hours from last known normal (LKN). The second outcome was TM in patients 5–15 hours from LKN with known LVO. The third outcome was TM in patients 4.5–12 hours from LKN. The authors created multivariable models using backward stepping with an α-error criterion of 0.05 and assessed them using C statistics.

RESULTS

The final predictors included the National Institutes of Health Stroke Scale (NIHSS), the Alberta Stroke Program Early CT Score (ASPECTS), and age. The prediction of the first outcome had a C statistic of 0.71 (n = 145), the second outcome had a C statistic of 0.85 (n = 56), and the third outcome had a C statistic of 0.86 (n = 54). With 1 point given for each predictor at different cutoffs, a score of 3 points had probabilities of true positive of 80%, 90%, and 94% for the first, second, and third outcomes, respectively.

CONCLUSIONS

Despite the limited sample size, compared with perfusion-based examinations, the clinical variables identified in this study accurately predicted which stroke patients would have salvageable penumbra (C statistic 71%–86%) in a range of clinical scenarios and treatment cutoffs. This prediction improved (C statistic 85%–86%) when utilized in patients with confirmed LVO or a less stringent tissue mismatch (TM < 1.2) cutoff. Larger patient registries should be used to validate and improve the predictive ability of these models.

 

No comments:

Post a Comment