Tuesday, April 27, 2021

Habitual coffee drinkers display a distinct pattern of brain functional connectivity

I have no clue what this says and don't care. I'm drinking as much coffee as I possibly can to prevent dementia and Parkinsons.

How coffee protects against Parkinson’s Aug. 2014  

Coffee May Lower Your Risk of Dementia Feb. 2013

Coffee's Phenylindanes Fight Alzheimer's Plaque 

Habitual coffee drinkers display a distinct pattern of brain functional connectivity

Abstract

Coffee is the most widely consumed source of caffeine worldwide, partly due to the psychoactive effects of this methylxanthine. Interestingly, the effects of its chronic consumption on the brain’s intrinsic functional networks are still largely unknown. This study provides the first extended characterization of the effects of chronic coffee consumption on human brain networks. Subjects were recruited and divided into two groups: habitual coffee drinkers (CD) and non-coffee drinkers (NCD). Resting-state functional magnetic resonance imaging (fMRI) was acquired in these volunteers who were also assessed regarding stress, anxiety, and depression scores. In the neuroimaging evaluation, the CD group showed decreased functional connectivity in the somatosensory and limbic networks during resting state as assessed with independent component analysis. The CD group also showed decreased functional connectivity in a network comprising subcortical and posterior brain regions associated with somatosensory, motor, and emotional processing as assessed with network-based statistics; moreover, CD displayed longer lifetime of a functional network involving subcortical regions, the visual network and the cerebellum. Importantly, all these differences were dependent on the frequency of caffeine consumption, and were reproduced after NCD drank coffee. CD showed higher stress levels than NCD, and although no other group effects were observed in this psychological assessment, increased frequency of caffeine consumption was also associated with increased anxiety in males. In conclusion, higher consumption of coffee and caffeinated products has an impact in brain functional connectivity at rest with implications in emotionality, alertness, and readiness to action.

Introduction

Coffee is the most widely consumed beverage, with particular interest for human health in view of its short-term effects on attention, sleep, and memory and its long-term impact on the appearance of different diseases and on healthy span of ageing [1, 2]. Coffee has several constituents able to impact on human health, amongst which stems caffeine, which is the most widely consumed psychostimulant in the world [3]. Despite its widespread use it is surprising to note that a thorough characterization of the chronic effects of coffee upon the human brain is still lacking. In the present work we aim to begin addressing that issue.

In the brain, caffeine acts as an antagonist of adenosine A1 and A2A receptors, leading to hyperexcitability of the central nervous system [3, 4]. This induces acute effects in diverse domains, such as physical endurance [1, 5], vigilance, dexterity [6], mood [7, 8], memory [9], and cognitive function [1, 8, 10]. There is also evidence that coffee/caffeine intake can normalize anxiety [11], although higher doses of caffeine may be anxiogenic [1, 12] by disrupting the HPA axis [13]. On the other hand, epidemiological and animal studies converge in concluding that coffee, caffeine and adenosine receptor antagonists attenuate the burden of neurodegenerative disorders such as Alzheimer’s [14], or psychiatric disorders such as depression [15]. Indeed, chronic antagonism of either A1 or A2 receptors seems to induce an upregulation of the former, but not the latter. The resulting altered receptor ratio may explain the shift from the acute psychomotor effects (e.g., attention, vigilance) to the longer-term actions of coffee (e.g., stress resistance, neuroprotection) effects [4, 16].

Functional magnetic resonance imaging (fMRI) allows studying, in a noninvasive way, the function of the human brain during execution of different tasks or at rest [17]. So far, most studies using fMRI were focused on measuring the acute effects of caffeine intake in the brain. Briefly, they have reported caffeine-related increases in blood oxygenation-dependent-level (BOLD) signal in different cortical and subcortical areas during a visuomotor task [18]; an impact in working memory and perfusion in elderly subjects [19, 20]; an increase in BOLD activation in the frontopolar and cingulate cortex during a 2-back verbal working memory task [21, 22]; and a global caffeine-induced increase in brain entropy, possibly representing an increased processing capacity [23]. Very few studies, however, were performed to study the acute effects of caffeine in functional connectivity (FC) at rest [24, 25]. Those few studies reveal a general trend for a caffeine-induced reduction in FC, associated with neuro-electric power fluctuations as measured through magnetoencephalography and exacerbated anticorrelations. Despite this existing literature, many aspects of the characterization of the impact of caffeine on the brain remain unexplored. Critical amongst these is the characterization of the chronic effects of habitual coffee and caffeine consumption upon the functional architecture of the brain. We are only aware of a single study that touched on this subject [26]. That work revealed an association between different habits of coffee consumption and the magnitude of BOLD signals in the visual cortex; however, it did not address possible effects on the functional connectome or resting state networks. Pursuit of the latter can present significant challenges in finding and recruiting participants with sufficient variation in consumption habits and who are willing to undergo necessary, even if short, abstinence procedures.

To tackle this gap, herein we will use whole brain approaches [27,28,29], as well as the study of brain functional dynamics [30] to compare FC and its dynamics between habitual and non-habitual coffee consumers. In addition, and because of the potential anxiogenic and HPA-disrupting role of caffeine, measures of psychological state (depression, anxiety, and stress) will also be acquired, in order to explore the potential association of habitual coffee consumption with these variables.

More at link.

 

No comments:

Post a Comment