Friday, June 25, 2021

Clinical value of assessing motor performance in postacute stroke patients

 Assessments are totally fucking worthless without stroke protocols behind them to correct disabilities. ARE YOU THAT FUCKING STUPID? I once asked a replacement OT to be able to read a newspaper, you know with both hands holding the paper in front of you. She immediately redefined the goal to what she could accomplish, putting Dycem on a table to hold the paper in place as pages are turned. That is why 'professionals' should not be allowed in goal setting, goals will be dumbed down.

Clinical value of assessing motor performance in postacute stroke patients

 

Abstract

Background

Rehabilitative treatment plans after stroke are based on clinical examinations of functional capacity and patient-reported outcomes. Objective information about daily life performance is usually not available, but it may improve therapy personalization.

Objective

To show that sensor-derived information about daily life performance is clinically valuable for counseling and the planning of rehabilitation programs for individual stroke patients who live at home. Performance information is clinically valuable if it can be used as a decision aid for the therapeutic management or counseling of individual patients.

Methods

This was an observational, cross-sectional case series including 15 ambulatory stroke patients. Motor performance in daily life was assessed with body-worn inertial sensors attached to the wrists, shanks and trunk that estimated basic physical activity and various measures of walking and arm activity in daily life. Stroke severity, motor function and activity, and degree of independence were quantified clinically by standard assessments and patient-reported outcomes. Motor performance was recorded for an average of 5.03 ± 1.1 h on the same day as the clinical assessment. The clinical value of performance information is explored in a narrative style by considering individual patient performance and capacity information.

Results

The patients were aged 59.9 ± 9.8 years (mean ± SD), were 6.5 ± 7.2 years post stroke, and had a National Institutes of Health Stroke Score of 4.0 ± 2.6. Capacity and performance measures showed high variability. There were substantial discrepancies between performance and capacity measures in some patients.

Conclusions

This case series shows that information about motor performance in daily life can be valuable for tailoring rehabilitative therapy plans and counseling according to the needs of individual stroke patients. Although the short recording time (average of 5.03 h) limited the scope of the conclusions, this study highlights the usefulness of objective measures of daily life performance for the planning of rehabilitative therapies. Further research is required to investigate whether information about performance in daily life leads to improved rehabilitative therapy results.

Introduction

When a rehabilitation physician meets with a postacute stroke patient for counseling and rehabilitation program planning, decisions are usually based on two types of information: the results of a clinical examination of functional capacity (i.e., what a person can do in a standardized, controlled environment) and the patient’s subjective report on limitations and problems in daily life. With this information, the rehabilitation professional and the patient set specific goals together(The professional should never be involved in goal setting, they will dumb down the goals to make themselves not look bad.), with the objective of improving functional performance (i.e., what a person does in his daily life)(Oh my God, you are immediately forcing your tyranny of low expectations on your patients.100% recovery  is the only goal in stroke.) [1]. An objective measurement of functional performance was not available for a long time, but with the development of wearable sensors, it is now increasingly used in rehabilitation. Wearable sensor technology allows the collection of data that had previously been missing: the ‘objective measurement of clinically important naturalistic behaviors' [2]. Ideally, information about performance would be available for the planning and monitoring of a rehabilitation program and would include several aspects, such as overall physical activity, walking behavior and upper-limb use.

Studies involving wearable sensors generally report low physical activity levels, low walking performance and little use of the affected arm in daily life in stroke patients at the population level [3, 4]. However, the variability of daily life performance measures among patients was considerable in most studies [5, 6]. Demographic or stroke-related variables did not [7] or only partially [6, 8,9,10] explain the performance variability.

Potential applications of sensor-derived performance measures in rehabilitation programs have been described by many authors [11, 12], but we are not aware of any studies that examined the value of such performance information in individual patients receiving clinical rehabilitation. Additionally, with few exceptions [13, 14], most studies that employed wearable sensors to measure daily life performance in stroke patients focused on either upper or lower limbs. However, the clinical situation of a patient initiating a rehabilitation program would, in most cases, require a comprehensive assessment of upper-limb activity, walking behavior and physical activity.

We hypothesize that comprehensive, sensor-derived performance information is clinically valuable for the planning of rehabilitation programs for individual stroke patients who live at home. Performance data are deemed clinically valuable if they can be used as decision aids for therapeutic management or for counseling in individual patients [15]. We explore the clinical value in a narrative style, with a focus on individual patient performance and capacity data.

Daily life performance was recorded with a series of wearable sensors placed on the upper and lower extremities and the trunk. The wearable sensors were placed on the patient in the clinic by a clinical scientist as suggested by others [16] because the handling and placement of the wearable sensors was judged too complicated to be done independently by the stroke patients. Recordings were initiated during a routine medical consultation in the morning and lasted until late afternoon of the same day. We intended to measure performance under a scenario that is feasible in routine clinical practice. Therefore, repeatedly visiting patients over several days to help with sensor handling (e.g., for undoing/redoing or charging of sensor modules) was not an option, considering the time and cost constraints in most healthcare systems. On these grounds, a longer recording period was not an option.

No comments:

Post a Comment