Use the labels in the right column to find what you want. Or you can go thru them one by one, there are only 29,397 posts. Searching is done in the search box in upper left corner. I blog on anything to do with stroke. DO NOT DO ANYTHING SUGGESTED HERE AS I AM NOT MEDICALLY TRAINED, YOUR DOCTOR IS, LISTEN TO THEM. BUT I BET THEY DON'T KNOW HOW TO GET YOU 100% RECOVERED. I DON'T EITHER BUT HAVE PLENTY OF QUESTIONS FOR YOUR DOCTOR TO ANSWER.
Novel computational model of the leptomeningeal collateral circulation.
Measurements of contrast time delay during acute ischaemic stroke.
Blood flow and contrast transport simulations during acute ischaemic stroke.
Variability of the collateral circulation significantly affects collateral flow.
A novel model of the leptomeningeal collateral circulation is created by combining data from multiple sources with statistical scaling laws. The extent of the collateral circulation is varied by defining a collateral vessel probability. Blood flow and pressure are simulated using a one-dimensional steady state blood flow model. The leptomeningeal collateral vessels provide significant flow during a stroke. The pressure drop over an occlusion predicted by the model ranges between 60 and 85 mmHg depending on the extent of the collateral circulation. The linear transport of contrast material was simulated in the circulatory network. The time delay of peak contrast over an occlusion is 3.3 s in the model, and 2.1 s (IQR 0.8–4.0 s) when measured in dynamic CTA data of acute ischaemic stroke patients. Modelling the leptomeningeal collateral circulation could lead to better estimates of infarct volume and patient outcome.
No comments:
Post a Comment