Wednesday, April 13, 2022

Endovascular treatment in the multimodality management of brain arteriovenous malformations: report of the Society of NeuroInterventional Surgery Standards and Guidelines Committee

I see no protocols in treating an AVM, so it is your responsibility to not have one until that occurs. Notice how your doctors can keep the monkey off their back.

YOU have to put the monkey(responsibility for your recovery) on their back and never let them transfer it back to you. Tell them you know all about the Harvard Business Review article on monkey on the back tossing.

Endovascular treatment in the multimodality management of brain arteriovenous malformations: report of the Society of NeuroInterventional Surgery Standards and Guidelines Committee

  1. Reade De Leacy1,
  2. Sameer A Ansari2,
  3. Clemens M Schirmer3,
  4. Daniel L Cooke4,
  5. Charles J Prestigiacomo5,
  6. Ketan R Bulsara6,
  7. Steven W Hetts4
  8. SNIS Standards and Guidelines Committee, SNIS Board of Directors
  1. Correspondence to Dr Steven W Hetts, Radiology, UCSF, San Francisco, California, USA; steven.hetts@ucsf.edu

Abstract

Background The purpose of this review is to summarize the data available for the role of angiography and embolization in the comprehensive multidisciplinary management of brain arteriovenous malformations (AVMs

Methods We performed a structured literature review for studies examining the indications, efficacy, and outcomes for patients undergoing endovascular therapy in the context of brain AVM management. We graded the quality of the evidence. Recommendations were arrived at through a consensus conference of the authors, then with additional input from the full Society of NeuroInterventional Surgery (SNIS) Standards and Guidelines Committee and the SNIS Board of Directors.

Results The multidisciplinary evaluation and treatment of brain AVMs continues to evolve. Recommendations include: (1) Digital subtraction catheter cerebral angiography (DSA)—including 2D, 3D, and reformatted cross-sectional views when appropriate—is recommended in the pre-treatment assessment of cerebral AVMs. (I, B-NR). (2) It is recommended that endovascular embolization of cerebral arteriovenous malformations be performed in the context of a complete multidisciplinary treatment plan aiming for obliteration of the AVM and cure. (I, B-NR). (3) Embolization of brain AVMs before surgical resection can be useful to reduce intraoperative blood loss, morbidity, and surgical complexity. (IIa, B-NR). (4) The role of primary curative embolization of cerebral arteriovenous malformations is uncertain, particularly as compared with microsurgery and radiosurgery with or without adjunctive embolization. Further research is needed, particularly with regard to risk for AVM recurrence. (III equivocal, C-LD). (5) Targeted embolization of high-risk features of ruptured brain AVMs may be considered to reduce the risk for recurrent hemorrhage. (IIb, C-LD). (6) Palliative embolization may be useful to treat symptomatic AVMs in which curative therapy is otherwise not possible. (IIb, B-NR). (7) The role of AVM embolization as an adjunct to radiosurgery is not well-established. Further research is needed. (III equivocal, C-LD). (8) Imaging follow-up after apparent cure of brain AVMs is recommended to assess for recurrence. Although non-invasive imaging may be used for longitudinal follow-up, DSA remains the gold standard for residual or recurrent AVM detection in patients with concerning imaging and/or clinical findings. (I, C-LD). (9) Improved national and international reporting of patients of all ages with brain AVMs, their treatments, side effects from treatment, and their long-term outcomes would enhance the ability to perform clinical trials and improve the rigor of research into this rare condition. (I, C-EO).

Conclusions Although the quality of evidence is lower than for more common conditions subjected to multiple randomized controlled trials, endovascular therapy has an important role in the management of brain AVMs. Prospective studies are needed to strengthen the data supporting these recommendations.

Statistics from Altmetric.com

Introduction

Brain arteriovenous malformations (AVMs), though rare, represent some of the most formidable and complex lesions encountered in neurovascular practice and can be the cause of morbidity and mortality.1 2 Ruptured or unruptured, brain AVMs are the focus of considerable debate regarding optimal management.3 In some instances, the decision for treatment can be controversial. The purpose of this review is not to address the decision on whether or not to treat, since this has been discussed extensively elsewhere in the medical literature.4 The goal of this review is to serve as an overview of the available treatment modalities and their associated outcomes with a focus on the relationship of endovascular therapy to other modalities involved in comprehensive brain AVM management. Recommendations are provided based on the level of medical evidence.

Methods

We systematically reviewed the literature for manuscripts with the key words ‘brain’ and ‘AVM’ or ‘arteriovenous malformation’ as well as any of the following: ‘natural history’, ‘imaging’, ‘management’, ‘treatment’, ‘surgery’, ‘endovascular’, ‘embolization’, ‘radiosurgery’, ‘radiotherapy’, ‘medical therapy’, ‘drug therapy’, ‘standards’, or ‘guidelines’. These terms were chosen to pull in a broad representation of the literature on brain AVMs and their treatment. Individual members of the Society of NeuroInterventional Surgery (SNIS) Standards and Guidelines Committee (S&G Committee) AVM writing group reviewed specific topic areas that form the basis for the narrative sections and recommendations below. The writing group graded evidence using the Oxford Centre for Evidence Based Medicine guidelines5 and the American Heart Association guidelines,6 with the latter being applied to recommendations. The writing group authors presented their findings to the entire S&G Committee to refine recommendations. Subsequent review of the draft guidelines was performed by the SNIS Board of Directors before submission for peer review by the Journal of NeuroInterventional Surgery (JNIS).

Diagnostic and pre-treatment imaging of brain AVMs

Brain AVMs have several angioarchitectural and geographic features that help to predict likelihood of future rupture, identify source of current hemorrhage, and probable morbidity of treatment.7–13 Angioarchitectural features, including feeding artery aneurysms, nidus aneurysms, large-caliber arteriovenous fistulous connections, and venous outflow stenoses, can be visualized to lesser or greater degrees by non-invasive imaging such as MR angiography (MRA) and CT angiography (CTA).14 15 Digital subtraction angiography (DSA), given its higher spatial and temporal resolution, remains superior to non-invasive modalities in identifying relevant AVM angioarchitectural features as compared with non-invasive modalities.16 17 Planar 2D-DSA with high imaging rates (≥7.5 frames per second) can sort out the order in which vessels fill even in high-flow situations. Volumetric 3D-DSA and time-resolved 4D-DSA offer additional structural and combined structural/temporal information, respectively, and can be reformatted in cross-sectional views that better localize the AVM relative to other anatomical structures.18–22 The vessel-selective nature of catheter-based DSA enables the operator to precisely identify individual arterial inputs to the brain AVM; vessel-selective arterial spin-labeling MRA may provide lower-resolution information regarding AVM feeders.23 MRI offers the greatest soft tissue anatomical resolution. Fusion between 3D-DSA and 3D-volumetric MRI has been posited to be the best combined technique for localizing and stratifying the natural history risk and treatment risk in brain AVMs, particularly when combined with clinical information about existing symptoms due to adjacency of the AVM or hemorrhage to eloquent functional regions of the brain.24 Similarly, functional MRI may assist in mapping eloquent regions of the brain that may have shifted location due to a nearby AVM.

RECOMMENDATION 1: Digital subtraction catheter cerebral angiography (DSA)—including 2D, 3D, and reformatted cross-sectional views when appropriate—is recommended in the pre-treatment assessment of cerebral AVMs. (I, B-NR)

Modalities for treatment of brain AVMs

Once the decision for AVM treatment has been made, neurovascular centers typically determine whether single modality or multimodality treatment will be most appropriate. The first consideration is whether the AVM is ruptured or unruptured, as this not only affects the risk of future rupture but also the treatment technique. The goal of treatment—AVM cure (ie, elimination of the nidus and arteriovenous shunting) versus partial treatment with targeting of a high-risk feature in AVMs that does not appear amenable to cure versus palliation of AVM-related symptoms—is a critical up-front discussion point between the patient and the treating team. Angioarchitecture (AVM nidus size, presence of feeding artery aneurysms, presence of nidus aneurysms, large caliber arteriovenous fistulas), location (eloquent vs non-eloquent, deep vs superficial), and local modality-based expertise (microsurgical, endovascular, and radiosurgical) are all key factors to take into account in developing a comprehensive and appropriate treatment plan.25

More at link.

No comments:

Post a Comment