Monday, January 29, 2024

Effects of an assist-as-needed equipped Tenodesis-Induced-Grip Exoskeleton Robot (TIGER) on upper limb function in patients with chronic stroke

 FYI. Have your doctor find and get this for you. If they can't you don't have a functioning stroke doctor. If they don't even know about it, that's worse! RUN AWAY!

Effects of an assist-as-needed equipped Tenodesis-Induced-Grip Exoskeleton Robot (TIGER) on upper limb function in patients with chronic stroke

Abstract

Background

The original version of the Tenodesis-Induced-Grip Exoskeleton Robot (TIGER) significantly improved the motor and functional performance of the affected upper extremity of chronic stroke patients. The assist-as-needed (AAN) technique in robot-involved therapy is widely favored for promoting patient active involvement, thereby fostering motor recovery. However, the TIGER lacked an AAN control strategy, which limited its use in different clinical applications. The present study aimed to develop and analyze the training effects of an AAN control mode to be integrated into the TIGER, to analyze the impact of baseline patient characteristics and training paradigms on outcomes for individuals with chronic stroke and to compare training effects on the upper limb function between using the AAN-equipped TIGER and using the original prototype.

Methods

This was a single-arm prospective interventional study which was conducted at a university hospital. In addition to 20 min of regular task-specific motor training, each participant completed a 20-min robotic training program consisting of 10 min in the AAN control mode and 10 min in the functional mode. The training sessions took place twice a week for 9 weeks. The primary outcome was the change score of the Fugl–Meyer Assessment of the Upper Extremity (FMA-UE), and the secondary outcomes were the change score of the Box and Blocks Test (BBT), the amount of use (AOU) and quality of movement (QOM) scales of the Motor Activity Log (MAL), the Semmes–Weinstein Monofilament (SWM) test, and the Modified Ashworth Scale (MAS) for fingers and wrist joints. The Generalized Estimating Equations (GEE) and stepwise regression model were used as the statistical analysis methods.

Results

Sixteen chronic stroke patients completed all steps of the study. The time from stroke onset to entry into the trial was 21.7 ± 18.9 months. After completing the training with the AAN-equipped TIGER, they exhibited significant improvements in movement reflected in their total score (pre/post values were 34.6 ± 11.5/38.5 ± 13.4) and all their sub-scores (pre/post values were 21.5 ± 6.0/23.3 ± 6.5, 9.5 ± 6.2/11.3 ± 7.2, and 3.6 ± 1.0/3.9 ± 1.0 for the shoulder, elbow, and forearm sub-category, the wrist and hand sub-category, and the coordination sub-category, respectively) on the FMA-UE (GEE, p < 0.05), as well as their scores on the BBT (pre/post values were 5.9 ± 6.5/9.5 ± 10.1; GEE, p = 0.004) and the AOU (pre/post values were 0.35 ± 0.50/0.48 ± 0.65; GEE, p = 0.02). However, the original TIGER exhibited greater improvements in their performance on the FMA-UE than the participants training with the AAN-equipped TIGER (GEE, p = 0.008). The baseline score for the wrist and hand sub-category of the FMA-UE was clearly the best predictor of TIGER-mediated improvements in hand function during the post-treatment assessment (adjusted R2 = 0.282, p = 0.001).

Conclusions

This study developed an AAN-equipped TIGER system and demonstrated its potential effects on improving both the function and activity level of the affected upper extremity of patients with stroke. Nevertheless, its training effects were not found to be advantageous to the original prototype. The baseline score for the FMA-UE sub-category of wrist and hand was the best predictor of improvements in hand function after TIGER rehabilitation.

Clinical trial registration ClinicalTrials.gov, identifier NCT03713476; date of registration: October19, 2018. https://clinicaltrials.gov/ct2/show/NCT03713476

Introduction

Stroke is a leading cause of long-term disability resulting from impairments in body structure and function in adults. This situation has created a growing demand for effective approaches to neuro-rehabilitation throughout the world [1]. According to work done in the fields of rehabilitation practice and of experience-dependent neuroplasticity, motor rehabilitation helps chronic stroke patients to recover their motor skills and motor function [2]. However, it has been suggested that the need for effective and accessible interventions for stroke rehabilitation is largely unmet [3].

The application of high-intensity, task-specific regimens to the rehabilitation of stroke survivors shows promise. The beneficial effects of this approach have been attributed to the synaptic plasticity induced by means of exposure to an enriched environment [4], proprioceptive stimulation [5], and motor learning [6]. This approach aligns with the development and utilization of distal hand robotics, potentially offering a targeted and intensified method for restoring hand function in individuals affected by stroke. The goals of this approach are to increase the intensity of the intervention in a controlled manner, as well as reducing the effort required by the therapists to administer repetitive, task-specific training sessions [7]. In comparative studies evaluating the advantages of employing robot-assisted training for both distal and proximal upper extremity (UE), findings have shown that concentrating on distal UE proves more effective in assisting stroke survivors to recover finger motor function [8], muscle strength and quality of movement [9] while performing functional activities. A recent review on robotics' application in hand rehabilitation highlighted that exoskeleton devices offer the advantage of providing passive support or assistance to the distal joints in the hand and wrist. They also offer haptic feedback for training in object manipulation skills. Therefore, the increasing adoption of exoskeletons in distal hand robotics signifies a growing trend [10]. In spite of such promising findings, it has been found that robot-assisted training devices designed to improve functional grasp face certain difficulties due to the need to simultaneously control multiple joints in the hand and wrist [11].

Currently, a variety of exoskeletal devices utilizing different technologies have been proposed. Significantly, their portability makes them a superior choice for use in the rehabilitation of an affected limb [12]. However, a robotic hand-and-wrist exoskeleton must be designed in such a way that its multiple components are exactly aligned with the joints and segments of the affected limb. The fact that the UEs of different people vary widely in their proportions limits the applicability of any given easy-to-use robotic device [11]. In an attempt to address this issue, the Tenodesis-Induced-Grip Exoskeleton Robot (TIGER) [13] was developed based on the concept of functional degrees of freedom (fDOF), taking into account anatomical constraints and incorporating musculotendon routing [14]. The TIGER was equipped with an adaptive actuation mechanism which simplified the multiple DOF of complex hand movements. With the assistance of built-in actuators, the TIGER was used with training paradigms for movements and activity levels which produced significant improvements in the movements of the whole UE as well as of its distal parts. Moreover, the ease with which the TIGER can be set up facilitated its use in clinical setting [15]. However, a major limitation of the original design of the TIGER was its lack of an assist-as-needed (AAN) control strategy designed to provide only the minimum assistance required to complete a target movement.

A number of factors have been found to increase the likelihood that the robot-assisted training of UE function will yield positive clinical outcomes: the characteristics which are specific to certain subgroups of patients [16, 17], the optimal time window for carrying out the training [18], and the types of robots used [19]. However, a recent systematic review of guidelines aimed to identify recommendations for upper limb robotic rehabilitation indicates that the precise patient characteristics benefiting most from this treatment and the optimal timing for its application remain uncertain [20]. Moreover, most of the robotic hand-and-wrist exoskeletons that have been developed so far have only been tested and used in a laboratory setting [21]. Little research has been done to identify the predictors of the effectiveness of using these robotic devices in a clinical setting, thus depriving healthcare professionals of a useful guide to making better clinical decisions. This research gap highlights the need to determine what factors affect the functional outcomes of applying robotic exoskeletons to neuromotor rehabilitation.

The motivation for the current study was addressing this research gap. To this end, our primary objective was to develop a training mode for the TIGER based on an AAN control strategy and to validate the training outcomes for stroke rehabilitation. The design of the AAN-equipped TIGER aligns with neurorehabilitation principles by emphasizing active user participation and engagement. Additionally, it fosters repetitive training to stimulate neuroplasticity and facilitate functional recovery. The secondary objective was to explore the factors affecting training outcomes of using the TIGER to help chronic stroke patients with hemiplegia recover UE function, and the third one was to compare training effects on the motor and functional performance of the affected UE between using the AAN-equipped TIGER and using the original prototype of the TIGER which was designed to provide constant assistance [13]. Although we expected the AAN-equipped TIGER to reduce motor impairment, we hypothesized that the training outcomes would be impacted by the baseline clinical characteristics of the patients and the training paradigms employed.

More at link

No comments:

Post a Comment