Sunday, March 17, 2024

Primary Motor Cortex in Stroke: A Functional MRI-Guided Proton MR Spectroscopic Study

 I don't see how anything here helps survivors get recovered! You're fired!

Primary Motor Cortex in Stroke: A Functional MRI-Guided Proton MR Spectroscopic Study

 Carmen M. Cirstea, MD, PhD; William M. Brooks, PhD; Sorin C. Craciunas, MD;Elena A. Popescu, PhD; In-Young Choi, PhD; Phil Lee, PhD; Ali Bani-Ahmed, BSc;Hung-Wen Yeh, PhD; Cary R. Savage, PhD; Leonardo G. Cohen, MD; Randolph J. Nudo, PhD
 Background and Purpose
 
 Our goal was to investigate whether certain metabolites, specific to neurons, glial cells, or theneuronal–glial neurotransmission system, in primary motor cortices (M1), are altered and correlated with clinical motor severity in chronic stroke.
 
Methods
 
 Fourteen survivors of a single ischemic stroke located outside the M1 and 14 age-matched healthy control subjects were included. At>6 months after stroke, N-acetylaspartate,
 myoinositol, and glutamate/glutamine were measured using proton magnetic resonance spectroscopic imaging (in-plane resolution=5x5 mm2) in radiologically normal appearing gray matter of the hand representation area, identified by functional MRI, in each M1. Metabolite concentrations and analyses of metabolite correlations within M1 were determined. Relationships between metabolite concentrations and arm motor impairment were also evaluated.
 Results 
 
The stroke survivors showed lower N-acetylaspartate and higher
 myoinositol across ipsilesional and contralesional M1 compared with control subjects. Significant correlations between N-acetylaspartate and glutamate/glutamine were found in either M1. Ipsilesional N-acetylaspartate and glutamate/glutamine were positively correlated with arm motor impairment and contralesional N-acetylaspartate with time after stroke.
Conclusions
 
Our preliminary data demonstrated significant alterations of neuronal glial interactions in spared M1with the ipsilesional alterations related to stroke severity and contralesional alterations to stroke duration. Thus,MR spectroscopy might be a sensitive method to quantify relevant metabolite changes after stroke and consequently increase our knowledge of the factors leading from these changes in spared motor cortex to motor impairment after stroke.
 (Stroke. 2011;42:1004-1009.)

No comments:

Post a Comment