Brain aging is characterized by progressive structural and functional deterioration, leading to cognitive decline and impaired social functioning. A key factor in this process is the age-related decline in adult neurogenesis, particularly in the hippocampal dentate gyrus, which is linked to deficits in learning, memory, and increased social anxiety. Oxytocin, a neuropeptide synthesized in the hypothalamus, regulates social behavior, cognition, and emotion by acting on brain regions including the hippocampus. Importantly, oxytocin levels decrease with age, potentially contributing to cognitive impairment. Here we examined whether chronic intraperitoneal oxytocin administration could attenuate cognitive decline in aged mice. Twelve-month-old mice received oxytocin injections (0.5 mg/kg) five times weekly for 13 weeks. Behavioral testing at 12 weeks of treatment using the object-place recognition task showed enhanced spatial learning and recognition memory in oxytocin-treated mice compared to saline controls. Immunohistochemistry revealed significantly increased doublecortin (DCX)-positive cells in the hippocampus, indicating enhanced neurogenesis. Furthermore, oxytocin treatment upregulated the expression of glutamate receptor 1 (GluR1) and N-methyl-D-aspartate receptor subunit 2B (NMDAR2B), which are markers of synaptic plasticity. These findings suggest that chronic oxytocin treatment is associated with enhanced neurogenesis and synaptic plasticity, which may contribute to improved cognition in aged mice. Our results support oxytocin as a potential therapeutic agent for age-related cognitive decline.
No comments:
Post a Comment