Monday, September 2, 2013

Warfarin Induces Cardiovascular Damage in Mice

When is the research coming that will test this out in humans? A great stroke association would start this immediately. Hopefully this can be explained by the rodent model in inflammation is not the same as humans.
----------------------------------------------------------------------------------------
http://atvb.ahajournals.org/content/early/2013/08/29/ATVBAHA.113.302244.abstract

Abstract

Objective—Vascular calcification is an independent risk factor for cardiovascular disease. Once thought to be a passive process, vascular calcification is now known to be actively prevented by proteins acting systemically (fetuin-A) or locally (matrix Gla protein). Warfarin is a vitamin K antagonist, widely prescribed to reduce coagulation by inhibiting vitamin K–dependent coagulation factors. Recently, it became clear that vitamin K antagonists also affect vascular calcification by inactivation of matrix Gla protein. Here, we investigated functional cardiovascular characteristics in a mouse model with warfarin-induced media calcification.
Approach and Results—DBA/2 mice received diets with variable concentrations of warfarin (0.03, 0.3, and 3 mg/g) with vitamin K1 at variable time intervals (1, 4, and 7 weeks). Von Kossa staining revealed that warfarin treatment induced calcified areas in both medial layer of aorta and heart in a dose- and time-dependent fashion, which could be inhibited by simultaneous vitamin K2 treatment. With ongoing calcification, matrix Gla protein mRNA expression decreased, and inactive matrix Gla protein expression increased. TdT-mediated dUTP-biotin nick end labeling–positive apoptosis increased, and vascular smooth muscle cell number was concomitantly reduced by warfarin treatment. On a functional level, warfarin treatment augmented aortic peak velocity, aortic valve–peak gradient, and carotid pulse-wave velocity.
Conclusion—Warfarin induced significant calcification with resulting functional cardiovascular damage in DBA/2 wild-type mice. The model would enable future researchers to decipher mechanisms of vascular calcification and may guide them in the development of new therapeutic strategies.

1 comment: