Tuesday, July 14, 2015

Clinical investigations of receptive and expressive musical functions after stroke

I wish they would just come out and document a specific music protocol rather than all these weasel words about what they are doing vs. what actually works.
http://journal.frontiersin.org/article/10.3389/fpsyg.2015.00768/full?utm_source=newsletter&utm_medium=email&utm_campaign=Psychology-w28-2015
Ken Rosslau1,2*, Daniel Steinwede2, C. Schröder2,3, Sibylle C. Herholz4, Claudia Lappe5, Christian Dobel5 and Eckart Altenmüller2
  • 1Clinic of Phoniatrics and Pedaudiology, Muenster University Hospital, Muenster, Germany
  • 2Institute of Music Physiology and Musicians‘ Medicine, Hannover University of Music, Drama and Media, Hannover, Germany
  • 3Clinic for Neurology, Hannover Medical School, Hannover, Germany
  • 4German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
  • 5Institute for Biomagnetism and Biosignalanalysis, University of Muenster, Muenster, Germany
There is a long tradition of investigating various disorders of musical abilities after stroke. These impairments, associated with acquired amusia, can be highly selective, affecting only music perception (i.e., receptive abilities/functions) or expression (music production abilities), and some patients report that these may dramatically influence their emotional state. The aim of this study was to systematically test both the melodic and rhythmic domains of music perception and expression in left- and right-sided stroke patients compared to healthy subjects. Music perception was assessed using rhythmic and melodic discrimination tasks, while tests of expressive function involved the vocal or instrumental reproduction of rhythms and melodies. Our approach revealed deficits in receptive and expressive functions in stroke patients, mediated by musical expertise. Those patients who had experienced a short period of musical training in childhood and adolescence performed better in the receptive and expressive subtests compared to those without any previous musical training. While discrimination of specific musical patterns was unimpaired after a left-sided stroke, patients with a right-sided stroke had worse results for fine melodic and rhythmic analysis. In terms of expressive testing, the most consistent results were obtained from a test that required patients to reproduce sung melodies. This implies that the means of investigating production abilities can impact the identification of deficits.

Introduction

Although the amusia field is presently dominated by research into congenital cases (e.g., Ayotte et al., 2002), there has been a long tradition of investigations into acquired amusia after stroke or brain damage. We have observed, based on our clinical experience on a stroke unit, that some patients feel that music sounds different to how it did before the stroke. For such cases, we were interested in detecting the characteristics of those deficits as they relate to perceptual and productive musical functions.
Cortical and subcortical brain lesions may cause impairments to such musical functions (Peretz, 1990; Liegeois-Chauvel et al., 1998; Schuppert et al., 2000). These impairments, which manifest themselves clinically in various patterns of deficits in music processing and production (Kohlmetz et al., 2003; DiPietro et al., 2004), are collectively referred to as receptive or expressive amusia. The terms “receptive” and “expressive” are used to represent perceptive and productive musical ability, respectively.
The cognitive processing of music involves high-order neural processing, and it has been claimed that an accurate perception of the melodic and temporal aspects of music requires both “local” and “global” auditory information processing. The terminology of “local” and “global” processing was introduced in the seminal paper by Peretz (1990): In melody perception, the particular interval between two successive notes is assumed to be processed by local, more analytical strategies, whereas the perception of the entire melodic contour requires a more global sense of information processing. The temporal dimension comprises rhythm perception through local strategies and discrimination of meter via global processing mechanisms (Peretz, 1990; see also Liegeois-Chauvel et al., 1998). Those findings were confirmed by our own observations (Schuppert et al., 2000); we detected a more pronounced deficit in local pitch- and rhythm- related ability following left-sided stroke. Conversely, after a right-sided stroke, greater deficits were revealed in global melody contour (use of melodic contextual cues in pitch judgments) and meter processing. Consequently, for this study we retain the systematic view of a differentiation between local and global aspects of melodic and rhythmic processing.
Another key theoretical concept is that of hemispheric specialization for music processing and expression. Previous studies have confirmed the idea of a relative specialization of left and right auditory areas by showing that the left temporal lobe is more involved in the processing of rhythmic, temporal, and sequential features of music than right temporal regions. The latter are more engaged in melodic (pitch and contour) and timbre perception and the perception of spectral features (Samson and Zatorre, 1994; Zatorre and Belin, 2001; Schonwiesner et al., 2005; Lappe et al., 2013). The tendency of melodic and rhythmic processing to lateralize to the left hemisphere in professional musicians has also been demonstrated (Altenmüller, 2001; Russeler et al., 2001; Vuust et al., 2005). Based on the idea of both hemispheres functioning as an intertwined music perception network (Altenmüller, 1989; Schon et al., 2010), an additional bilateral sensitivity to timing information has also been suggested, as well as a higher order system in the superior temporal sulcus, with the processing of slowly modulated signals in the right hemisphere (Boemio et al., 2005). In the case of expressive functions, evidence exists for a differentiation of hemispheric involvement: namely, an asymmetry favoring right temporal regions in the maintenance of pitch while singing (Perry et al., 1999) and in the imagery of tunes (Halpern and Zatorre, 1999; Herholz et al., 2008).
In our view, a lesion study provides an excellent opportunity to clearly associate such receptive and expressive musical functions. The Montreal Battery of Evaluation of Amusia (MBEA; Peretz et al., 2003) is a well-established tool to document incidences of amusia. It contains detailed receptive melodic and metric subtests subdivided into global and local aspects of music processing. However, when we started data collection, the first version of the MBEA seemed to be too complex for use in the clinical routine of a stroke unit. Additionally, the MBEA does not contain any expressive tests, which we considered valuable in addressing the lack of information about expressive musical abilities after a stroke.
In line with the MBEA, one element of the bedside test battery used in this study was a group of five receptive subtests (Pitch Test, Melody Interval Test, Melody Contour Test, Rhythm Test, Meter Test), presented in a previous design to assess melodic and metric music perception by means of discrimination tasks (Schuppert et al., 2000). Additionally, we generated new versions of expressive rhythmic and melodic tests.
Our study comprises two experiments with separate groups of subjects. After evaluation of the first experiment, we reorganized the receptive and expressive tests for a second experimental setting with some adjustments to better capture the underlying receptive or expressive mechanisms. For the original Meter Test 1, melody sequences had to be identified as a “waltz” or a “marching” meter. The idea was to make it easy to decide whether there was a metric violation or not. However, after evaluation of the first experiment we changed the test to a discrimination task requiring “same”/“different” judgments in line with the other receptive subtests (Figure 1), because some subjects were unfamiliar with the musical terms of “waltz” or “marching” meter. The second adjustment concerned the instrument used for the expressive melody test. For the first version of expressive melody testing, we used a xylophone because this instrument is used in early music education at German schools, and it seemed to be appropriate for the simple reproduction of short melody lines. But again after the evaluation of the first experiment, we recognized that the use of a xylophone was much more complex than had been assumed, based on the statements of our subjects complaining about too complex motoric interaction. Due to the fact that Germans also receive a vocal education in school and that good vocal imitation via singing had already been shown for congenital amusics (Tremblay-Champoux et al., 2010), we decided to change this test to one of vocal reproduction.
FIGURE 1
www.frontiersin.org FIGURE 1. Examples of receptive and expressive subtests.
Creating a direct interaction between the subjects and the investigator was important for the expressive testing of our study. Recent literature has shown that the brain’s mirror neuron system is strongly involved in motoric imitation as well as in vocal imitation, a phenomenon first investigated in song birds (Prather, 2013) that learn their melody lines by imitation. On the basis of various neuroimaging studies, the claim could be made that the intertwined involvement of receptive and expressive functions, especially during vocal production, is a sign of a refined learning system of human social communication (Brown et al., 2004; Ramachandra et al., 2009; Leveque et al., 2013). Recent findings discussed the underlying pathways for vocal and non-vocal perception and production (Loui et al., 2009) which could be interpreted as a reason for a potentially different outcome for instrumental versus vocal imitation. Nevertheless, good results of live vocal interaction during stroke rehabilitation have been obtained with Melodic Intonation Therapy in which patients actively reproduce vocally adapted intonation lines to improve language recovery (Norton et al., 2009).
This study was designed as a straightforward assessment of receptive and especially expressive musical functions that could feasibly be applied in clinical practice. Our main focus was to compare the music perception and production abilities of patients directly after stroke, separately by side of lesion, with those of healthy subjects. Our tests covered the spectral and temporal domains; some focused on a more detailed analysis of musical patterns (Pitch Test, Melody Interval Test, Rhythm Test) and others on a more global music perception ability (Melody Contour Test, Meter Test), on the basis of previous literature on acquired amusia.
In line with previous research, we expected stroke patients to perform significantly worse on receptive and expressive musical tasks than the controls. Furthermore, we expected that on comparing the outcome of the different receptive subtests, local versus global processing would be differentially affected by the side on which the stroke had been experienced. We anticipated greater reduction in local musical function in the Melody Interval Test and the Rhythm Test following a left-sided stroke and a more strongly impaired global musical function in the Melody Contour Test and the Meter Test following a right-sided stroke. For both receptive and expressive musical functions, we hypothesized that musical impairment would depend on the level of musical education that was gained prior to the stroke.

No comments:

Post a Comment