If your doctor isn't using this to explain how your stroke affected your brain connections and how to plan for your recovery, then you have an absolute idiot for a doctor. Run away as fast as you can. This may be a minor bit of hyperbole but it is a serious question for your doctor.
http://medicalxpress.com/news/2015-07-brain-atlas-alternative-disorders.html?hootPostID=e58156db1cd975fffeabc6b985c61dd3
A new study, led by Jesús M. Cortés, an
Ikerbasque lecturer at the Biocruces Institute for Healthcare Research
and an academic collaborator in the Department of Cell Biology and
Histology of the UPV/EHU-University of the Basque Country, has shed some
light on the brain's organization and functions.
The brain is a highly complex, dynamic system. It is made up of grey and white matter.
The grey matter contains the neurons which are responsible for
processing the information received from the sensory area and other parts of the brain. The white matter makes use of fibres and is responsible for connecting the various regions of grey matter of the brain so that they can communicate with each other efficiently and collaborate in complex, cognitive tasks
(this map of fibres is like the brain's highways). The functional
interaction between the various regions of the brain is essential for it
to function properly: it is reckoned that 20% of the energy consumed by
a person is used by the brain to establish and maintain these
connections.
Many studies have been carried out until now to understand how the
brain functions and how it is organised structurally, but we still have
much more to learn.
A new study, led by Jesús M. Cortés, an Ikerbasque lecturer at the
Biocruces Institute for Healthcare Research and an academic collaborator
in the Department of Cell Biology and Histology of the
UPV/EHU-University of the Basque Country, has shed some light on this
problem. The work has been published in the prestigious journal Scientific Reports
and its lead author is Ibai Díez, a telecommunications engineer also
attached to Biocruces. In actual fact, the study combines techniques at
the cutting edge of three disciplines: neuroscience, image processing
and network theory. In particular, the brain's structural (fibres) and
functional data (the brain's functional activity) have been merged on a
large scale to analyse how the brain is organised. This analysis has
resulted in the "partitioning" of the brain into an atlas that follows a
common functional and structural pattern. This is the first time that a
brain atlas has been produced by combining structural and functional
data; until now, the atlases used were purely structural ones
(anatomical ones) or purely functional ones.
Thanks to this new partition of the brain, the heavy dependence that
exists between structural connectivity and the functional connectivity
networks has been revealed for the first time. The atlas is robust and
consistent across different individuals (it has been validated using
data from other subjects and in different magnetic resonance imaging
equipment).
Many neurological disorders affect the central nervous system. A
considerable number are of a structural origin, such as head injuries or
neurodegenerative diseases such as Alzhiemer's or Parkinson's (which
originate as a result of a significant loss of fibres). Others may have a
functional origin, such as a simple headache, a migraine or even an
epileptic fit. Structural damage is known to lead to a functional
alteration (the loss of fibres in Alzheimer's causes memory loss, etc.)
or the other way round (there are people who display neuronal loss in
specific zones after numerous epileptic fits). So the structure-function
relationship is closely related as alterations in one of them affect
the other.
The new atlas has been produced using data from healthy subjects
Right now, alterations in each of these regions caused by aging or a
moderate to severe head injury are being studied. So the study of the
alterations in the different regions of the atlas may henceforth open up
alternative avenues for understanding a range of disorders.
More information: I. Diez, P. Bonifazi, I. Escudero, B.
Mateos, M.A. Munoz, S. Stramaglia and J.M. Cortes A novel brain
partition highlights the modular skeleton shared by structure and
function Scientific Reports (2015). DOI: 10.1038/srep10532
No comments:
Post a Comment