Friday, July 1, 2022

Soft robotics and functional electrical stimulation advances for restoring hand function in people with SCI: a narrative review, clinical guidelines and future directions

Yes, this is for spinal cord injury but what can your doctor use from this to get your hand recovered? 

Do you prefer your  doctor incompetence NOT KNOWING? OR NOT DOING?

Soft robotics and functional electrical stimulation advances for restoring hand function in people with SCI: a narrative review, clinical guidelines and future directions

Abstract

Background

Recovery of hand function is crucial for the independence of people with spinal cord injury (SCI). Wearable devices based on soft robotics (SR) or functional electrical stimulation (FES) have been employed to assist the recovery of hand function both during activities of daily living (ADLs) and during therapy. However, the implementation of these wearable devices has not been compiled in a review focusing on the functional outcomes they can activate/elicit/stimulate/potentiate. This narrative review aims at providing a guide both for engineers to help in the development of new technologies and for clinicians to serve as clinical guidelines based on the available technology in order to assist and/or recover hand function in people with SCI.

Methods

A literature search was performed in Scopus, Pubmed and IEEE Xplore for articles involving SR devices or FES systems designed for hand therapy or assistance, published since 2010. Only studies that reported functional outcomes from individuals with SCI were selected. The final collections of both groups (SR and FES) were analysed based on the technical aspects and reported functional outcomes.

Results

A total of 37 out of 1101 articles were selected, 12 regarding SR and 25 involving FES devices. Most studies were limited to research prototypes, designed either for assistance or therapy. From an engineering perspective, technological improvements for home-based use such as portability, donning/doffing and the time spent with calibration were identified. From the clinician point of view, the most suitable technical features (e.g., user intent detection) and assessment tools should be determined according to the particular patient condition. A wide range of functional assessment tests were adopted, moreover, most studies used non-standardized tests.

Conclusion

SR and FES wearable devices are promising technologies to support hand function recovery in subjects with SCI. Technical improvements in aspects such as the user intent detection, portability or calibration as well as consistent assessment of functional outcomes were the main identified limitations. These limitations seem to be be preventing the translation into clinical practice of these technological devices created in the laboratory.

Background

Spinal cord injury (SCI) often leads to motor and sensory deficits, in addition to other complications, such as autonomic dysfunction, respiratory problems and urinary incontinence [1]. Among these complications, one of the major therapeutic priorities of people with tetraplegia is the recovery of arm and hand function since they are essential to independently perform most of the activities of daily living (ADLs) [2,3,4].

The rehabilitation of arm, hand and finger-related functional abilities after SCI can follow different approaches. One of them is through invasive procedures, like nerve and tendon transfer, in which preserved working nerves (tendons) are surgically re-directed to proximal non-functioning motor pathways [5]. Although this technique has the potential to produce relevant functional outcomes, it may demand long training time for adaptation post-surgery [5].

Another alternative to recover hand function after SCI are activity-based therapies. These comprise several training protocols and techniques, usually delivered under the supervision of physical or occupational therapist, and have the potential to increase range of motion, decrease pain and spasticity or recover lost functional movements, relying on the principles of neuroplasticity [6]. When the patient’s limb is activated, combining volitional control and external assistance, sensory afferent input is produced, which triggers a series of neurorestoration processes (e.g., synapse formation, remyelination, neural reorganization and repair), either in supraspinal or in spinal structures [6,7,8]. However, due to the high number of repetitions required to enhance neuroplastic adaptations, this type of intervention can be time-consuming and costly [7, 9, 10]. To potentially reduce treatment cost and time, and improve functional outcomes, activity-based therapies can be supported by technological hand neuroprostheses. In addition to therapeutical purposes, these engineering features have been employed as assistive devices, increasing the user’s independence and augmenting the overall practicing time.

Functional electrical stimulation (FES) is one of the technologies used to build neuroprostheses to support activity-based training after SCI. During a conventional FES therapy, subjects are encouraged to voluntary activate their muscles to perform a certain task while the FES system stimulates the muscles using superficial or implanted electrodes [11, 12]. According to this approach, purposeful movements are produced in parallel to a combination of cortical activation (due to the voluntary attempt) and peripheral stimulation. The FES produces additional afferent information thus enhancing the practice-induced brain and spinal plasticity [13,14,15]. A common method used to trigger electrical stimulation is through a push-button. However, a more intuitive system detects user intent via physiological signals, e.g., electroencephalography (EEG) or electromyography (EMG), which increases usability and learning outcomes, by pairing stimulation with movement intention [16]. Despite promising results as a therapeutical tool [17], FES devices are limited in generating high accuracy control and muscle selectivity [18]. In this respect, implanted systems [19] or superficial multi-pad electrode matrices [20, 21] can yield better outcomes but they still have many obstacles, such as the limitations of its use in case of lower motor neuron damage [22, 23] or in people with cervical injury without any volitional control of the hand. [14].

Robotic systems are also employed to support activity-based therapy for hands after SCI. Typically, these are non-portable devices that are able to assist end-user’s hand in a clinical setting, throughout repeatable and predictable movement patterns [24]. However, most of these devices are bulky and are built using rigid links, which hampers the biomimetics of the human hand [25], and possibly limits the potential outcomes of the therapy [26]. In this sense, neuroprostheses based on Soft Robotics (SR) devices have emerged as a specific category of robotic rehabilitation systems, relying on soft actuators (usually back-drivable) and flexible links, increasing comfort and flexibility to adjust to the contours of the human body [25, 27,28,29]. SR devices developed for hand function are also intended to be lightweight and portable, possibly for home-rehabilitation use, which is important to increase end-user adherence to treatment and also to meet assistance needs in ADLs. The underlying neuroplastic process associated to the use of SR tools is the same as observed in conventional activity-based therapies, since they also provide mechanical assistance for the movement execution. However, they are intended to increase the user engagement (by supporting activities in a daily basis) and consequently increase the number of repetitions (practice time), for a more affordable cost compared to the constant supervision of a physiatrist [28].

Noticeably, FES and SR have complementary features which encourages protocols combining both technologies. In a recent review, Dunkelberger and colleagues described a hybrid muscle stimulation and robotic assistance that was used for upper limb movement in people with SCI [30]. Even if the review did not focus on hand function or in SR, the authors concluded that the combination of FES and SR was promising, but argued that technological advances (e.g., improve tunability, reduce size and weight or detect user intent in an intuitive and unobtrusive way), both in FES and robotics, should be achieved to be fully integrated in an efficient hybrid system [30].

The present narrative review aims to identify the effects of FES, SR and their combination in the recovery of hand function in people with SCI. Therefore, this review summarizes the most recent research articles that presented any hand functional outcomes in people with SCI, using neuroprostheses based on FES and/or SR, either for assistance or therapy purposes. Results from this review will inform engineers on the next steps to develop these technologies and will allow clinicians to use this information as easy-to-use clinical guidelines.

More at link.

No comments:

Post a Comment