Changing stroke rehab and research worldwide now.Time is Brain! trillions and trillions of neurons that DIE each day because there are NO effective hyperacute therapies besides tPA(only 12% effective). I have 523 posts on hyperacute therapy, enough for researchers to spend decades proving them out. These are my personal ideas and blog on stroke rehabilitation and stroke research. Do not attempt any of these without checking with your medical provider. Unless you join me in agitating, when you need these therapies they won't be there.

What this blog is for:

My blog is not to help survivors recover, it is to have the 10 million yearly stroke survivors light fires underneath their doctors, stroke hospitals and stroke researchers to get stroke solved. 100% recovery. The stroke medical world is completely failing at that goal, they don't even have it as a goal. Shortly after getting out of the hospital and getting NO information on the process or protocols of stroke rehabilitation and recovery I started searching on the internet and found that no other survivor received useful information. This is an attempt to cover all stroke rehabilitation information that should be readily available to survivors so they can talk with informed knowledge to their medical staff. It lays out what needs to be done to get stroke survivors closer to 100% recovery. It's quite disgusting that this information is not available from every stroke association and doctors group.

Saturday, June 7, 2025

A deep learning system for detecting silent brain infarction and predicting stroke risk

 Why the fuck didn't you do research that prevents stroke? This is useless until that occurs! You're all fired!

A deep learning system for detecting silent brain infarction and predicting stroke risk

Abstract

Current brain imaging to detect silent brain infarctions (SBIs) is not feasible for the general population. Here, to overcome this challenge, we developed a retinal image-based deep learning system, DeepRETStroke, to detect SBI and refine stroke risk. We use 895,640 retinal photographs to pretrain the DeepRETStroke system, which encodes a domain-specific foundation model for representing eye–brain connections. Then, we validated the downstream clinical tasks of DeepRETStroke using 213,762 retinal photographs from diverse datasets across China, Singapore, Malaysia, the USA, the UK and Denmark to detect SBI and predict stroke events. DeepRETStroke performed well in internal validation datasets, with areas under the curve of 0.901 for predicting incident stroke and 0.769 for predicting recurrent stroke. External validations demonstrated consistent performances across diverse datasets. Finally, in a prospective study comprising 218 participants with stroke, we assessed the performance of DeepRETStroke compared with clinical traits in guiding strategies for stroke recurrence prevention. Altogether, the retinal image-based deep learning system, DeepRETStroke, is superior to clinical traits in predicting stroke events, especially by incorporating the detection of SBI, without the need for brain imaging.


No comments:

Post a Comment