Changing stroke rehab and research worldwide now.Time is Brain! trillions and trillions of neurons that DIE each day because there are NO effective hyperacute therapies besides tPA(only 12% effective). I have 523 posts on hyperacute therapy, enough for researchers to spend decades proving them out. These are my personal ideas and blog on stroke rehabilitation and stroke research. Do not attempt any of these without checking with your medical provider. Unless you join me in agitating, when you need these therapies they won't be there.

What this blog is for:

My blog is not to help survivors recover, it is to have the 10 million yearly stroke survivors light fires underneath their doctors, stroke hospitals and stroke researchers to get stroke solved. 100% recovery. The stroke medical world is completely failing at that goal, they don't even have it as a goal. Shortly after getting out of the hospital and getting NO information on the process or protocols of stroke rehabilitation and recovery I started searching on the internet and found that no other survivor received useful information. This is an attempt to cover all stroke rehabilitation information that should be readily available to survivors so they can talk with informed knowledge to their medical staff. It lays out what needs to be done to get stroke survivors closer to 100% recovery. It's quite disgusting that this information is not available from every stroke association and doctors group.

Saturday, August 8, 2015

Cathepsin B is a New Drug Target for Traumatic Brain Injury Therapeutics: Evidence for E64d as a Promising Lead Drug Candidate

Whom do we contact in the stroke world to ensure that this is further researched for stroke survivors? We can't continually let promising research never get followed up just because we have craptastic stroke associations that don't have any strategy to solve all the problems in stroke.
http://journal.frontiersin.org/article/10.3389/fneur.2015.00178/abstract



  • 1Dept. Neurosciences, Medical University of South Carolina, USA
  • 2Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, USA
  • 3American Life Science Pharmaceuticals, USA
  • 4Neuroscience iMed, AstraZeneca, USA
  • 5Dept. Chemical Engineering, University of Washington, USA
  • 6Ralph H. Johnson Veterans Administration Medical Center, USA

There currently is no therapeutic drug treatment for traumatic brain injury (TBI) despite decades of experimental clinical trials. This may be because the mechanistic pathways for improving TBI outcomes have yet to be identified and exploited. As such, there remains a need to seek out new molecular targets and their drug candidates to find new treatments for TBI. This review presents supporting evidence for cathepsin B, a cysteine protease, as a potentially important drug target for TBI. Cathepsin B expression is greatly up-regulated in TBI animal models, as well as in trauma patients. Importantly, knockout of the cathepsin B gene in TBI mice results in substantial improvements of TBI-caused deficits in behavior, pathology, and biomarkers, as well as improvements in related injury models. During the process of TBI-induced injury, cathepsin B likely escapes the lysosome, its normal subcellular location, into the cytoplasm or extracellular matrix (ECM) where its unleashed proteolytic power causes destruction via necrotic, apoptotic, autophagic, and activated glia-induced cell death, together with ECM breakdown and inflammation. Significantly, chemical inhibitors of cathepsin B are effective for improving deficits in TBI and related injuries including ischemia, cerebral bleeding, cerebral aneurysm, edema, pain, infection, nephritis, epilepsy, rheumatoid arthritis, pancreatitis, Huntington’s disease, and Alzheimer’s disease. The inhibitor E64d shows prominent efficacy for amelioration of TBI-caused deficits in preclinical models. In clinical trials, E64d has been shown to be safe based on its toxicological profile and, thus, illustrates the compound as an excellent candidate for drug development. These data support the overall conclusion that drug development of cathepsin B inhibitors, with E64d or a novel analog as a lead drug candidate, should be accelerated to improve the outcomes of TBI and related injuries.

No comments:

Post a Comment