Changing stroke rehab and research worldwide now.Time is Brain! trillions and trillions of neurons that DIE each day because there are NO effective hyperacute therapies besides tPA(only 12% effective). I have 523 posts on hyperacute therapy, enough for researchers to spend decades proving them out. These are my personal ideas and blog on stroke rehabilitation and stroke research. Do not attempt any of these without checking with your medical provider. Unless you join me in agitating, when you need these therapies they won't be there.

What this blog is for:

My blog is not to help survivors recover, it is to have the 10 million yearly stroke survivors light fires underneath their doctors, stroke hospitals and stroke researchers to get stroke solved. 100% recovery. The stroke medical world is completely failing at that goal, they don't even have it as a goal. Shortly after getting out of the hospital and getting NO information on the process or protocols of stroke rehabilitation and recovery I started searching on the internet and found that no other survivor received useful information. This is an attempt to cover all stroke rehabilitation information that should be readily available to survivors so they can talk with informed knowledge to their medical staff. It lays out what needs to be done to get stroke survivors closer to 100% recovery. It's quite disgusting that this information is not available from every stroke association and doctors group.

Saturday, September 5, 2020

Why Naming Neurons Can Help Cure Brain Disease

 This would help tremendously in stroke, Quantify exactly the types, numbers and location and you have the objective starting point for all stroke research, Without that no stroke research is ever repeatable. Because right now your doctor has no fucking clue which of these 9 options is the cause of your disability. 

You can't tell me these all have the same solution, I'm not that stupid.
1. Penumbra damage to the motor cortex.
2. Dead brain in the motor cortex.
3. Penumbra damage in the pre-motor cortex.
4. Dead brain in the pre-motor cortex.
5. Penumbra damage in the executive control area.
6. Dead brain in the executive control area.
7. Penumbra damage in the white matter underlying any of these three.
8. Dead brain in the white matter underlying any of these three.
9. Spasticity preventing movement from occurring.

The latest here:

Why Naming Neurons Can Help Cure Brain Disease

 ummary: Researchers propose a unified classification of diverse cell types, which could shed light on how our brains are wired.

Source: Columbia University

The human brain has about 100 billion neurons, linked in intricate ways, that the Spanish neuroanatomist Ramón y Cajal compared to “the impenetrable jungles where many investigators have lost themselves.”

But to decipher how the brain works and understand how it can go awry in many diseases, it is essential to figure out how many classes of neurons it actually has and how they are connected with each other.

Now, in a paper published recently in Nature Neuroscience, a Columbia-led international group has proposed a unified nomenclature of the neurons of the cerebral cortex, the outermost layer of the brain that plays a key role in attention, perception, awareness, memory, language, and consciousness.

“A broadly agreed-upon classification is essential to archiving the hundreds of neuron types and their properties,” said Rafael Yuste, a professor in the Department of Biological Sciences at Columbia University. “If we could decipher how the cortex is built and what it does, one could scientifically understand our minds.”

How to classify neurons has been much debated since the inception of modern neuroscience. Many efforts to describe their anatomical, physiological, and molecular features have been unsuccessful due to their cellular diversity, Yuste said.

During the last two decades, however, the Human Genome Project has produced a host of molecular methods that enable identifying and phenotyping cells in great numbers.

“This molecular revolution is generating databases that are complete, accurate, and permanent–a triumvirate considered the golden standard of biology,” Yuste said.

In particular, using highly automated techniques that sequence the RNA of individual cells rapidly and cost-effectively, several groups have started to assemble datasets to classify cell types in the cortex. “The approach enables sampling tens of thousands of cells, generating what could be an essentially complete coverage of all the existing cell types in the cortex,” Yuste said.

Two years ago, during discussions at an international meeting on cortical neurons in Copenhagen, participants agreed that the time was right to finally tackle the creation of a unified classification.

A group of 74 scientists proposed the use of single-cell RNA sequencing as the skeleton for a unified classification of cortical neurons. Known as the “Copenhagen Classification,” the proposal is described in the Nature Neuroscience article.

This shows neurons
Red: inhibitory cells. Green: excitatory neurons. Image is credited to Yuste Lab, Columbia University.

No comments:

Post a Comment