Changing stroke rehab and research worldwide now.Time is Brain! trillions and trillions of neurons that DIE each day because there are NO effective hyperacute therapies besides tPA(only 12% effective). I have 523 posts on hyperacute therapy, enough for researchers to spend decades proving them out. These are my personal ideas and blog on stroke rehabilitation and stroke research. Do not attempt any of these without checking with your medical provider. Unless you join me in agitating, when you need these therapies they won't be there.

What this blog is for:

My blog is not to help survivors recover, it is to have the 10 million yearly stroke survivors light fires underneath their doctors, stroke hospitals and stroke researchers to get stroke solved. 100% recovery. The stroke medical world is completely failing at that goal, they don't even have it as a goal. Shortly after getting out of the hospital and getting NO information on the process or protocols of stroke rehabilitation and recovery I started searching on the internet and found that no other survivor received useful information. This is an attempt to cover all stroke rehabilitation information that should be readily available to survivors so they can talk with informed knowledge to their medical staff. It lays out what needs to be done to get stroke survivors closer to 100% recovery. It's quite disgusting that this information is not available from every stroke association and doctors group.

Friday, November 15, 2024

Reduced brain oxygen response to spreading depolarization predicts worse outcome in ischaemic stroke

 I'd have you fired for cause for not providing a solution for this!

Reduced brain oxygen response to spreading depolarization predicts worse outcome in ischaemic stroke

Nils Hecht, Daisy Haddad, Konrad Neumann, Leonie Schumm

Brain. 2024 Nov 14 [Epub ahead of print]

Spreading depolarization (SD) describes a propagating neuronal mass depolarization within the cerebral cortex that represents a mediator of infarct development and strongly stimulates the metabolic rate of O2 consumption. Here, we investigated the influence of Spreading Depolarization (SD) on brain tissue partial pressure of O2 (ptiO2) within the peri-infarct tissue of patients suffering malignant hemispheric stroke (MHS). This prospective observational trial included 25 patients with MHS that underwent decompressive hemicraniectomy followed by subdural placement of electrodes for electrocorticography (ECoG) and neighboring implantation of a ptiO2 probe within the peri-infarcted cortex. Continuous side-by-side ECoG + ptiO2 recordings were obtained for 3-6 days postoperatively and analyzed for the occurrence of SD-independent and SD-coupled ptiO2 changes, radiological findings, as well as their association with clinical outcome at 6 months. During the combined ECoG + ptiO2 monitoring period of 2,604 hours and among 1,022 SDs, 483 (47%) SD-coupled ptiO2 variations were identified as biphasic (59%), hypoxic (36%) or hyperoxic (5%) ptiO2 responses that differed significantly (*p<0.0001). Among the remaining 538/1,022 (53%) SDs, no SD-coupled ptiO2 response was detected, which we categorized as 'No response'. The overall infarct progression was 1.7% (IQR -2.5-10.9). Spreading Depolarization characteristics regarding type, duration and frequency, as well as SD-independent baseline ptiO2 had no association with outcome. In contrast, a high occurrence rate and amplitude of SD-coupled variations in ptiO2 were associated with improved outcome at 6 months (occurrence: r=-0.62, *p=0.035; amplitude: r=-0.57, *p=0.024; Spearman correlation). In conclusion, an absent or reduced ptiO2 response to SD could indicate tissue-at-risk and help direct targeted treatment strategies in ischemic stroke, which is further evidence that not all SDs are the same, but that tissue responses coupled to SD such as ptiO2 contain prognostic information. In particular, a lack of SD-coupled ptiO2 variations appears to be a predictor of worse outcome in large hemispheric stroke.
Source: Brain : a journal of neurology

No comments:

Post a Comment