Changing stroke rehab and research worldwide now.Time is Brain! trillions and trillions of neurons that DIE each day because there are NO effective hyperacute therapies besides tPA(only 12% effective). I have 523 posts on hyperacute therapy, enough for researchers to spend decades proving them out. These are my personal ideas and blog on stroke rehabilitation and stroke research. Do not attempt any of these without checking with your medical provider. Unless you join me in agitating, when you need these therapies they won't be there.

What this blog is for:

My blog is not to help survivors recover, it is to have the 10 million yearly stroke survivors light fires underneath their doctors, stroke hospitals and stroke researchers to get stroke solved. 100% recovery. The stroke medical world is completely failing at that goal, they don't even have it as a goal. Shortly after getting out of the hospital and getting NO information on the process or protocols of stroke rehabilitation and recovery I started searching on the internet and found that no other survivor received useful information. This is an attempt to cover all stroke rehabilitation information that should be readily available to survivors so they can talk with informed knowledge to their medical staff. It lays out what needs to be done to get stroke survivors closer to 100% recovery. It's quite disgusting that this information is not available from every stroke association and doctors group.

Saturday, October 11, 2025

Relationship between Gut microbiome and brain volumes among Japanese Men

 Current scientific evidence indicates that bigger brain volumes show a small, yet significant, positive correlation with better cognitive performance, which can contribute to greater mental resilience. You need this, so ask your doctor for the protocol that supplies that!

  • brain volume (6 posts to April 2019)
  • Relationship between Gut microbiome and brain volumes among Japanese Men 


    Sabrina Ahmed,Zhang Hexun,Yuichiro Yano,Yukiko Okami,Nazar Mohd Azahar,Keiko Kondo,
    Hisatomi Arima,Sayuki Torii,Mohammad Moniruzzaman,Gantsetseg Ganbaatar,Aya Kadota,Akira 
    Andoh,Akihiko Shiino, [ ... ],for the SESSA Research Group [ view all ]
    Published: October 7, 2025
    https://doi.org/10.1371/journal.pone.0333612

    Abstract

    Evidence of preclinical interactions between the gut microbiome and brain health is accumulating. Studies of animal models and specific patient populations have suggested a relationship between gut microbiomes and brain volumes, but this association is understudied in apparently healthy humans. We conducted a population-based cross-sectional study of 623 Japanese men from the Shiga Epidemiological Study on Subclinical Atherosclerosis (SESSA). We performed 16S ribosomal RNA gene sequencing of stool samples collected during the follow-up stage (mean [SD] age, 68.0 [8.0] years; range, 46–83 years). All participants underwent brain magnetic resonance imaging and automated voxel-based morphometry. Principal coordinate analysis, linear discriminant, and multivariable linear regression analyses were performed. In multivariable linear regression analysis, after adjusting for age and total intracranial volume, only gray matter volume showed a positive association with alpha diversity (the Shannon index richness, q-value <0.01). However, no association was found after further adjustments for body mass index, physical activity, smoking, drinking, and hypertension. The weighted UniFrac distances (beta diversity) measured using principal coordinate analysis showed that lower and higher white and gray matter volumes formed distinct clusters (q < 0.01). In linear discriminant analysis and multivariable-adjusted linear regression analysis, several genera were significantly associated with gray and white matter volumes (q < 0.01); however, Lachnospiraceae, a butyrate-producing bacterium, was consistently related to a higher white matter volume in different statistical analysis models. Egarthellaceae, Bifidobacteraceae, and Selenomonadaceae showed a positive association with greater gray matter volume. Our findings support an association between gut microbiome diversity and brain volumes in middle-aged to older Japanese men. This study provides insight into the underlying effects of the gut microbiome on human brain volume.

    No comments:

    Post a Comment