Changing stroke rehab and research worldwide now.Time is Brain! trillions and trillions of neurons that DIE each day because there are NO effective hyperacute therapies besides tPA(only 12% effective). I have 523 posts on hyperacute therapy, enough for researchers to spend decades proving them out. These are my personal ideas and blog on stroke rehabilitation and stroke research. Do not attempt any of these without checking with your medical provider. Unless you join me in agitating, when you need these therapies they won't be there.

What this blog is for:

My blog is not to help survivors recover, it is to have the 10 million yearly stroke survivors light fires underneath their doctors, stroke hospitals and stroke researchers to get stroke solved. 100% recovery. The stroke medical world is completely failing at that goal, they don't even have it as a goal. Shortly after getting out of the hospital and getting NO information on the process or protocols of stroke rehabilitation and recovery I started searching on the internet and found that no other survivor received useful information. This is an attempt to cover all stroke rehabilitation information that should be readily available to survivors so they can talk with informed knowledge to their medical staff. It lays out what needs to be done to get stroke survivors closer to 100% recovery. It's quite disgusting that this information is not available from every stroke association and doctors group.

Tuesday, December 13, 2016

Nanorockets now available with brakes and a steering wheel

For when we actually need to get drugs thru the blood brain barrier that can help improve neuroplasticity and neurogenesis.  I wonder what researcher is working on kickstarting neuroplasticity and neurogenesis?
http://www.alphagalileo.org/ViewItem.aspx?ItemId=170873&CultureCode=en

Tiny machines like nanorockets are ideal candidates for drug delivery in the human body. Chemists at Radboud University now demonstrate the first complete movement regulation of a nanorocket, by providing temperature responsive brakes. An interesting feature for practical applications, since temperature sensitivity enables the rocket to stop in diseased tissues where temperatures are higher. Nature Chemistry publishes their results on December 12.

The soft nanosystems that the bio-organic chemists at Radboud University work with self assemble, which means that they spontaneously form functional units. This allows the nanorockets to change shape, making them ideal candidates for containing cargo like medicine. ‘Our biggest challenge is to provide our nanorockets with various functionalities’, says Daniela Wilson, head of Radboud University’s Bio-organic chemistry department and Nanomedicine theme leader ‘We now demonstrate the first molecularly built brake system, enabling the rockets to start and stop at desired locations.’

Temperature responsive brakes
The brakes consist of brushes made of polymers – long chains of responsive units – that grow onto the surface of the nanorockets. These brushes swell or collapse in response to the environmental temperature and in this way regulate fuel access to the rocket; in this case H2O2, hydrogen peroxide. Their sensitivity is high, as is shown by the fact that the brushes immediately collapse at a temperature of 35 degrees Celsius or higher, making the machine stop. ‘This all happens without affecting the catalytic activity or the shape of the nanorocket’, explains Wilson. ‘Therefore, nanorockets equipped with this valve system are able to move with great efficiency in water, even at low concentrations of fuel.’
Magnetic field acts as steering wheel
In another publication in Advanced Materials, Wilson and colleagues show how low magnetic fields can act as a steering wheel for the nanorockets. By growing magnetic metallic nickel into the core of the rockets, magnetic field can be used to guide and steer the rockets into desired directions.
But, there’s always room for improvement. Wilson: ‘What would be even more interesting than temperature responsive brakes, is a system that responds to light. This would allow us to start or stop a nanorocket by shining a laser light on it. Furthermore, even though our nanorockets are not toxic to living cells, they are not completely biodegradable yet. And of course that is one of the prerequisites for their use as medicine carriers in the body. These are only some examples of the next challenges for our group!’

Attached files

  • Figure 1: Nanorockets explanation. Left side: in temperatures below 35 degrees Celsius, the brushes swell, opening up the valve, allowing fuel inside and propelling the nanorocket forward. Right side: when the temperature rises above 35 degrees Celsius, the brushes collapse, closing off the valve and stopping the supply of fuel, and thus the movement (copyright: Nature Chemistry).

  • Figure 1: Nanorockets explanation. Left side: in temperatures below 35 degrees Celsius, the brushes swell, opening up the valve, allowing fuel inside and propelling the nanorocket forward. Right side: when the temperature rises above 35 degrees Celsius, the brushes collapse, closing off the valve and stopping the supply of fuel, and thus the movement (copyright: Nature Chemistry).

No comments:

Post a Comment