Changing stroke rehab and research worldwide now.Time is Brain! trillions and trillions of neurons that DIE each day because there are NO effective hyperacute therapies besides tPA(only 12% effective). I have 523 posts on hyperacute therapy, enough for researchers to spend decades proving them out. These are my personal ideas and blog on stroke rehabilitation and stroke research. Do not attempt any of these without checking with your medical provider. Unless you join me in agitating, when you need these therapies they won't be there.

What this blog is for:

My blog is not to help survivors recover, it is to have the 10 million yearly stroke survivors light fires underneath their doctors, stroke hospitals and stroke researchers to get stroke solved. 100% recovery. The stroke medical world is completely failing at that goal, they don't even have it as a goal. Shortly after getting out of the hospital and getting NO information on the process or protocols of stroke rehabilitation and recovery I started searching on the internet and found that no other survivor received useful information. This is an attempt to cover all stroke rehabilitation information that should be readily available to survivors so they can talk with informed knowledge to their medical staff. It lays out what needs to be done to get stroke survivors closer to 100% recovery. It's quite disgusting that this information is not available from every stroke association and doctors group.

Saturday, January 26, 2019

How to Rapidly Image Entire Brains at Nanoscale Resolution

How fucking long will it take before stroke leadership looks at this and says; 'Maybe we could repurpose this to identify stroke damage and processes that fix such stroke damage.' Like exactly how neuroplasticity and neurogenesis can be made repeatable on demand.  

But nothing will occur since we have NO STROKE LEADERSHIP.

How to Rapidly Image Entire Brains at Nanoscale Resolution


Summary

A powerful new technique combines expansion microscopy with lattice light-sheet microscopy for nanoscale imaging of fly and mouse neuronal circuits and their molecular constituents that’s roughly 1,000 times faster than other methods.
Scientists mapped the location of all synapses – over 40 million – across an adult fruit fly brain. A half-million colored balls represent synapses associated with dopaminergic neurons. Credit: Gao et al./ Science 2019
Eric Betzig didn’t expect the experiment to work.
Two scientists, Ruixuan Gao and Shoh Asano, wanted to use his team’s microscope on brain samples expanded to four times their usual size – blown up like balloons. The duo, part of Ed Boyden’s lab at the Massachusetts Institute of Technology (MIT), uses a chemical technique to make small specimens bigger so scientists can more easily see molecular details.
Their technique, called expansion microscopy, worked well on single cells or thin tissue sections imaged in conventional light microscopes, but Boyden’s team wanted to image vastly larger chunks of tissue. They wanted to see complete neural circuits spanning millimeters or more. The scientists needed a microscope that was high-speed, high resolution, and relatively gentle – something that didn’t destroy a sample before they could finish imaging it.
So, they turned to Betzig. His team at the Howard Hughes Medical Institute’s Janelia Research Campus had used their lattice light-sheet microscope to image the rapid subcellular dynamics of sensitive living cells in 3-D. Combining the two microscopy techniques could potentially offer rapid, detailed images of wide swaths of brain tissue.
“I thought they were full of it,” Betzig remembers. “The idea does sound a bit crude,” Gao says. “We’re stretching tissues apart.” But Betzig invited Gao and Asano to try the lattice scope out.
“I was going to show them,” Betzig laughs. Instead, he was blown away. “I couldn’t believe the quality of the data I was seeing. You could have knocked me over with a feather.”
A forest of dendritic spines protrudes from the branches of neurons in the mouse cortex. Credit: Gao et al./ Science 2019
Now, he and his Janelia colleagues have teamed up with Boyden’s group and imaged the entire fruit fly brain and sections of mouse brain the thickness of the cortex. Their combined method offers high resolution with the ability to visualize any desired protein – and it’s fast, too. Imaging the fly brain in multiple colors took just 62.5 hours, compared to the years it would take using an electron microscope, Boyden, Betzig, and their colleagues report January 17, 2018, in the journal, Science.
“I can see us getting to the point of imaging at least 10 fly brains per day,” says Betzig, now an HHMI investigator at the University of California, Berkeley. Such speed and resolution will let scientists ask new questions, he says, like how brains differ between males and females, or how brain circuits vary between flies of the same type.
Boyden’s group dreams of making a map of the brain so detailed you can simulate it in a computer. “We’ve crossed a threshold in imaging performance,” says Boyden, who was selected as an HHMI investigator in 2018. “That’s why we’re so excited. We’re not just scanning incrementally more brain tissue, we’re scanning entire brains.”

Expanding the brain

Making detailed maps of the brain requires charting its activity and wiring – in humans, the thousands of connections made by each of more than 80 billion neurons. Such maps could help scientists spot where brain disease begins, build better artificial intelligence, or even explain behavior. “That’s like the holy grail for neuroscience,” Boyden says.
Years ago, his group had an idea to figure out how everything was organized: What if they could actually make the brain bigger – big enough to look inside? By infusing samples with swellable gels – like the stuff in baby diapers – the team invented a way to expand tissues, making the molecules inside less crowded and easier to see under a microscope. Molecules lock into a gel scaffold, keeping the same relative positions even after expansion.
After expanding the fruit fly brain to four times its usual size, scientists used lattice light-sheet microscopy to image all of the dopaminergic neurons (green). Credit: Gao et al./ Science 2019
But it wasn’t easy to image large tissue volumes. The thicker a specimen gets, the harder it is to illuminate only the parts you want to see. Shining too much light on samples can photobleach them, burning out the fluorescent “bulbs” scientists use to light up cells.
Expanding a sample just four-fold increases its volume 64-fold, so imaging speed also becomes paramount, Gao says. “We needed something that was fast and didn’t have much photobleaching, and we knew there was a fantastic microscope at Janelia.”
The lattice light-sheet microscope sweeps an ultrathin sheet of light through a specimen, illuminating only that part in the microscope’s plane of focus. That helps out-of-focus areas stay dark, keeping a specimen’s fluorescence from being extinguished.
Inside the mouse cortex, myelin sheaths insulate nerve cells. Scientists can measure how these sheaths vary along the length of a nerve cell’s axon. Credit: Gao et al./ Science 2019
When Gao and Asano first tested their expanded mouse tissues on the lattice scope, they saw a thicket of glowing nubs protruding from neurons’ branches. These nubs, called dendritic spines, often look like mushrooms, with bulbous heads on skinny necks that can be hard to measure. But the scientists were able to see even “the smallest necks possible,” Asano says, while simultaneously imaging synaptic proteins nearby.
“It was incredibly impressive,” says Betzig. The team was convinced that they should explore the combined technique further. “And that’s what we’ve been doing ever since,” he says.

No comments:

Post a Comment