Changing stroke rehab and research worldwide now.Time is Brain! trillions and trillions of neurons that DIE each day because there are NO effective hyperacute therapies besides tPA(only 12% effective). I have 523 posts on hyperacute therapy, enough for researchers to spend decades proving them out. These are my personal ideas and blog on stroke rehabilitation and stroke research. Do not attempt any of these without checking with your medical provider. Unless you join me in agitating, when you need these therapies they won't be there.

What this blog is for:

My blog is not to help survivors recover, it is to have the 10 million yearly stroke survivors light fires underneath their doctors, stroke hospitals and stroke researchers to get stroke solved. 100% recovery. The stroke medical world is completely failing at that goal, they don't even have it as a goal. Shortly after getting out of the hospital and getting NO information on the process or protocols of stroke rehabilitation and recovery I started searching on the internet and found that no other survivor received useful information. This is an attempt to cover all stroke rehabilitation information that should be readily available to survivors so they can talk with informed knowledge to their medical staff. It lays out what needs to be done to get stroke survivors closer to 100% recovery. It's quite disgusting that this information is not available from every stroke association and doctors group.

Wednesday, March 6, 2024

Efficacy of a Rehabilitation Program Using Mirror Therapy and Cognitive Therapeutic Exercise on Upper Limb Functionality in Patients with Acute Stroke

Here is CTE; 

The effects of cognitive exercise therapy on chronic stroke patients’ upper limb functions, activities of daily living and quality of life

Mirror therapy has been out there a long time. Hasn't your competent? doctor been using mirror therapy for years already? NO? So you don't have a competent doctor? Why are you seeing them and why haven't they been fired?

Efficacy of a Rehabilitation Program Using Mirror Therapy and Cognitive Therapeutic Exercise on Upper Limb Functionality in Patients with Acute Stroke

1 and 1
1
Department of Health Sciences, University of Burgos, 09001 Burgos, Spain
2
Faculty of Health Science, University Isabel I, 09003 Burgos, Spain
3
BioVetMed & SportSci Research Group, Department of Physical activity and Sport, Faculty of Sport Sciences, University of Murcia, San Javier, 30720 Murcia, Spain
*
Author to whom correspondence should be addressed.
Healthcare 2024, 12(5), 569; https://doi.org/10.3390/healthcare12050569
Submission received: 13 December 2023 / Revised: 26 January 2024 / Accepted: 27 February 2024 / Published: 29 February 2024

Abstract

Applying evidence-based therapies in stroke rehabilitation plays a crucial role in this process, as they are supported by studies and results that demonstrate their effectiveness in improving functionality, such as mirror therapy (MT), cognitive therapeutic exercise (CTE), and task-oriented training. The aim of this study was to assess the effectiveness of MT and CTE combined with task-oriented training on the functionality, sensitivity, range, and pain of the affected upper limb in patients with acute stroke. A longitudinal multicenter study recruited a sample of 120 patients with acute stroke randomly and consecutively, meeting specific inclusion and exclusion criteria. They were randomly allocated into three groups: a control group only for task-oriented training (TOT) and two groups undergoing either MT or CTE, both combined with TOT. The overall functionality of the affected upper limb, specific functionality, sensitivity, range of motion, and pain were assessed using the Fugl–Meyer Assessment Upper Extremity (FMA-UE) scale validated for the Spanish population. An initial assessment was conducted before the intervention, a second assessment after completing the 20 sessions, and another three months later. ANCOVA analysis revealed statistically significant differences between the assessments and the experimental groups compared to the control group, indicating significant improvement in the overall functionality of the upper limb in these patients. However, no significant differences were observed between the two experimental groups. The conclusion drawn was that both therapeutic techniques are equally effective in treating functionality, sensitivity, range of motion, and pain in the upper limb following a stroke.

1. Introduction

Stroke, also known as cerebrovascular accident (CVA), is one of the most severe and common medical emergencies worldwide. It is of vascular origin, causing signs of neurologic deficit with rapid onset. These clinical signs can be focal or global, and if they last more than 24 h, without a clear cause that can cause death [1,2]. Since 1990, the incidence of strokes has increased by 70%, and deaths from strokes has increased by 43%, with a worrying rising trend in those under 70 years of age [3]. Today, this disease is the second leading cause of death worldwide and ranks third in terms of mortality and disability [2]. In 2019, there were 12.2 million strokes and 101 million prevalent strokes [4,5]. The vast majority of stroke cases occur due to potentially modifiable risk factors, which demonstrates the huge work that remains to be done to improve the prevention of this disease by reducing exposure to risk factors such as hypertension, diabetes, tobacco use, sedentary lifestyle, and abdominal fat [5,6]. In Spain, stroke is considered the leading cause of disability in adulthood and the second cause of dementia, significantly reducing the quality of life of patients and therefore that of their close social circle, directly affecting the health system [2].
One of the main sequelae resulting from a stroke is the loss of functionality, which can be significant, especially concerning the affected upper limbs. Following a stroke episode, it is common to experience a decline in function in the upper limbs, characterized by difficulties in performing activities of daily living (ADLs) or instrumental activities of daily living (IADLs) [7,8]. This loss of function may be related to muscle weakness, lack of motor coordination, or an inability to control movements. Motor impairment in the upper extremities occurs in approximately 80% of survivors, with 50% reporting pain in the upper limb during the first 12 months after the episode [9,10,11].
Furthermore, sensitivity in the affected limb can also be altered. Issues with tactile sensitivity may arise, such as decreased or loss of touch sensation, along with changes in temperature or pressure perception. These sensory changes can hinder precise movement execution or object recognition through the sense of touch. Similarly, the range of motion, i.e., the ability to move the joints of the upper limb, may also decrease after a stroke. This might manifest as restricted natural movements in the shoulder, elbow, wrist, or fingers, further complicating the performance of everyday tasks [12,13].
Pain affecting the upper limbs is another common outcome after a stroke. Pain can be neuropathic or related to posture, movement, and muscle stiffness. The presence of pain can negatively impact rehabilitation and the ability to perform exercises or therapies aimed at recovering limb functionality [12,14].
All of these factors together can trigger hemiplegia or hemiparesis, common conditions after a stroke involving paralysis or muscle weakness on one side of the body, primarily affecting an upper and lower limb on the same side. This signifies a change in the ability to achieve a normal level of muscle strength, including sensory alteration, loss of motor control, and spasticity [15,16]. This condition can significantly impact a person’s functionality. Hemiplegia can range from mild weakness to complete paralysis on one side of the body, affecting the ability to move and perform daily tasks.
Collectively, these effects can complicate daily life and the recovery process after a stroke. Rehabilitation in these cases usually aims to address these challenges, seeking to improve function, sensitivity, and range of motion and to manage pain to regain the maximum possible functionality of the affected upper limb. This post-stroke rehabilitation period should commence as early as possible, with function recovery predominantly occurring in the first few weeks [17], although there are studies indicating that patients go through a phase known as spontaneous recovery during the initial weeks [18].
Before initiating rehabilitation, conducting a thorough assessment to determine the stroke’s aftermath is crucial. Understanding where to begin is vital for implementing quality rehabilitation. To achieve this, there are several instruments used to assess the functional state of stroke survivors. The Fugl–Meyer Assessment—Upper Extremity (FMA-UE) scale is currently the most widely used quantitative evaluation to measure functionality and motor recovery post-stroke [12,19,20].
Regarding rehabilitation, therapies supported by scientific evidence play a crucial role in this process, as they are backed by studies and outcomes demonstrating their effectiveness in improving functionality and recovering lost skills. Some of these include mirror therapy (MT), cognitive therapeutic exercise (CTE), and task-oriented training.
MT is a rehabilitation technique that utilizes visual illusion to enhance motor function in individuals who have experienced strokes, limb injuries, or lost functionality in a limb. This therapy involves using a mirror to create the illusion that the affected limb is functioning normally [21]. A mirror is positioned to reflect the unaffected limb, while the affected limb remains hidden behind it. Moving the unaffected limb creates a reflection in the mirror, simulating movement in the affected limb, tricking the brain into perceiving normal movement. This therapy focuses on repeating controlled and specific movements, which may promote neuroplasticity—the brain’s ability to reorganize and adapt through experience and repetitive practice. It is believed that this therapy could help restore motor function, enhance coordination, and alleviate chronic pain associated with the affected limb [11,22,23].
As for CTE, also known as the Perfetti method, is a neurorehabilitation approach offering personalized and specific treatment for each patient. Its goal is to recover lost or altered movement due to central nervous system damage. This method involves assigning the patient a specific problem-solving task that can be resolved through fragmented movement of body segments guided by the therapist. CTE aims to improve the specific motor deficit in the hemiplegic upper limb by addressing patterns such as abnormal reactions to stretching, abnormal irradiation, motor mobility of elementary schemes, and promoting efficient and high-quality motor recruitment. Essentially, it aims to reactivate and strengthen neural connections damaged by stroke [24,25].
On the other hand, these patients can benefit from task-oriented training, which is an effective way to encourage and develop motor skills and brain plasticity through the repetition of specific and functional tasks. It relies on tailored and personalized activities that mimic daily actions. Therapists design specific training programs for each patient, considering their individual needs, motor deficiencies, and recovery goals. These programs focus on activities resembling the tasks the patient needs to perform in their daily life. The effectiveness of task-oriented training lies in its emphasis on functionality and practical application of motor skills in real-life situations. This approach aims not only to restore motor function but also to improve the patient’s independence in daily activities, which can have a significant impact on their quality of life [26].
Recent studies have demonstrated that the combined use of these therapies activates central nervous system plasticity more effectively than when used individually, to improve motor function [27,28,29,30]. However, to date and to the authors’ knowledge, there is no article comparing if any of these combinations (MT or CTE combined with task-oriented training) are the most effective in improving upper limb function after a stroke.
Therefore, the aim of the present study is to verify the effectiveness of combining these techniques on upper limb functionality after a stroke and to determine which of them yields better results.
 
More at link.

No comments:

Post a Comment