Changing stroke rehab and research worldwide now.Time is Brain! trillions and trillions of neurons that DIE each day because there are NO effective hyperacute therapies besides tPA(only 12% effective). I have 523 posts on hyperacute therapy, enough for researchers to spend decades proving them out. These are my personal ideas and blog on stroke rehabilitation and stroke research. Do not attempt any of these without checking with your medical provider. Unless you join me in agitating, when you need these therapies they won't be there.

What this blog is for:

My blog is not to help survivors recover, it is to have the 10 million yearly stroke survivors light fires underneath their doctors, stroke hospitals and stroke researchers to get stroke solved. 100% recovery. The stroke medical world is completely failing at that goal, they don't even have it as a goal. Shortly after getting out of the hospital and getting NO information on the process or protocols of stroke rehabilitation and recovery I started searching on the internet and found that no other survivor received useful information. This is an attempt to cover all stroke rehabilitation information that should be readily available to survivors so they can talk with informed knowledge to their medical staff. It lays out what needs to be done to get stroke survivors closer to 100% recovery. It's quite disgusting that this information is not available from every stroke association and doctors group.

Monday, June 19, 2023

Does a Cognitive Network Contribute to Motor Recovery After Ischemic Stroke?

Hell, my cognition is great, hasn't helped one bit in my motor recovery. All because you blithering idiots haven't found an EXACT CURE FOR SPASTICITY!

Does a Cognitive Network Contribute to Motor Recovery After Ischemic Stroke?

Abstract

Background

In stroke patients, preserved cognitive function plays a role in motor recovery, but there is insufficient evidence on the involved mechanisms. These mechanisms require investigation in the human brain, which is composed of large-scale functionally specialized networks.

Objective

In this study, we investigated the role of cognition-related networks on upper extremity motor recovery using neuroimaging data of subacute stroke patients.

Methods

This study retrospectively analyzed cohort data of 108 subacute ischemic stroke patients. All patients underwent resting-state functional MRI and motor function assessments using the Fugl-Meyer assessment (FMA) at 2 weeks after stroke onset. The FMA upper extremity (FMA-UE) score was obtained again at three months after stroke onset to assess motor recovery. To construct a resting-state network, cortical surface parcellation was performed using the Gordon atlas, which included 333 regions of interest, and 12 resting-state networks were extracted. Linear regression was used to identify the relationships between the FMA-UE recovery score and resting-state networks.

Results

Cognition-related networks were correlated with the FMA-UE recovery score, as were motor-related networks. Interaction effects between motor- and cognition-related network states existed in motor recovery. Specifically, cognition-related networks were associated with motor recovery in patients with a lower strength of motor-related networks.

Conclusions

These results suggested that the greater the damage to the motor network caused by stroke is, the more important the cognition-related networks are in motor recovery.

Get full access to this article

No comments:

Post a Comment