Changing stroke rehab and research worldwide now.Time is Brain! trillions and trillions of neurons that DIE each day because there are NO effective hyperacute therapies besides tPA(only 12% effective). I have 523 posts on hyperacute therapy, enough for researchers to spend decades proving them out. These are my personal ideas and blog on stroke rehabilitation and stroke research. Do not attempt any of these without checking with your medical provider. Unless you join me in agitating, when you need these therapies they won't be there.

What this blog is for:

My blog is not to help survivors recover, it is to have the 10 million yearly stroke survivors light fires underneath their doctors, stroke hospitals and stroke researchers to get stroke solved. 100% recovery. The stroke medical world is completely failing at that goal, they don't even have it as a goal. Shortly after getting out of the hospital and getting NO information on the process or protocols of stroke rehabilitation and recovery I started searching on the internet and found that no other survivor received useful information. This is an attempt to cover all stroke rehabilitation information that should be readily available to survivors so they can talk with informed knowledge to their medical staff. It lays out what needs to be done to get stroke survivors closer to 100% recovery. It's quite disgusting that this information is not available from every stroke association and doctors group.

Tuesday, January 6, 2015

A new way to diagnose brain damage from concussions, strokes, and dementia

I bet your hospital will do nothing with this and stay with the piss-poor diagnosis procedures they are currently using.
http://now.tufts.edu/news-releases/new-way-diagnose-brain-damage-concussions-strokes-and-dementia
New optical diagnostic technology developed at Tufts University School of Engineering promises new ways to identify and monitor brain damage resulting from traumatic injury, stroke or vascular dementia—in real time and without invasive procedures.
Coherent hemodynamics spectroscopy (CHS), developed and published by Tufts Professor of Biomedical Engineering Sergio Fantini, measures blood flow, blood volume, and oxygen consumption in the brain. It uses non-invasive near infrared (NIR) light technology to scan brain tissue, and then applies mathematical algorithms to interpret that information.
"CHS is based on measurements of brain hemodynamics that are interpreted according to unique algorithms that generate measures of cerebral blood flow, blood volume and oxygen consumption," says Fantini. "This technique can be used not only to assess brain diseases but also to study the blood flow and how it is regulated in the healthy brain."
Tufts has licensed CHS on a non-exclusive basis to ISS, a Champaign, Ill.-based company that specializes in technology to measure hemoglobin concentration and oxygenation in brain and muscle tissue.
"Potentially the market for CHS is large as it encompasses several applications from the monitoring of cerebrovascular disorders to assessing neurological disorders," says Beniamino Barbieri, president of ISS. "It reminds me of the introduction of ultrasound technology at beginning of the seventies; nobody back then knew how to utilize the new technology and of course, nowadays, its applications are ubiquitous in any medical center."

How It Works
CHS uses laser diodes which emit NIR light that is delivered to the scalp by fiber optics. Light waves are absorbed by the blood vessels in the brain. Remaining light is reflected back to sensors, resulting in optical signals that oscillate with time as a result of the heartbeat, respiration, or other sources of variations in the blood pressure.
By analyzing the light signals with algorithms developed for this purpose, Fantini's model is able to evaluate blood flow and the way the brain regulates it--which is one marker for brain health.
CHS technology has been tested among patients undergoing hemodialysis at Tufts Medical Center. Published research reported a lower cerebral blood flow in dialysis patients compared with healthy patients. "Non-invasive ways to measure local changes in cerebral blood flow, particularly during periods of stress such as hemodialysis, surgeries, and in the setting of stroke, could have major implications for maintaining healthy brain function," says Daniel Weiner, M.D., a nephrologist at Tufts Medical Center (Tufts MC) and associate professor of medicine at Tufts University School of Medicine (TUSM), who is a member of the research team.
Josh Kornbluth, M.D., a neurologist at Tufts MC and associate professor of medicine at TUSM, is also working with Fantini to explore CHS's potential to assess the cerebrovascular state of patients who suffer traumatic brain injury or stroke. They hope to test CHS further among neurological critical care patients.
"Having data about local cerebral blood flow and whether it is properly regulated can allow us to more accurately develop individualized therapy and interventions instead of choosing a 'one size fits all' approach to traumatic brain injury, stroke, or subarachnoid hemorrhage," Kornbluth says.
- See more at: http://now.tufts.edu/news-releases/new-way-diagnose-brain-damage-concussions-strokes-and-dementia#sthash.7YSIn7KB.dpuf


New optical diagnostic technology developed at Tufts University School of Engineering promises new ways to identify and monitor brain damage resulting from traumatic injury, stroke or vascular dementia—in real time and without invasive procedures.
Coherent hemodynamics spectroscopy (CHS), developed and published by Tufts Professor of Biomedical Engineering Sergio Fantini, measures blood flow, blood volume, and oxygen consumption in the brain. It uses non-invasive near infrared (NIR) light technology to scan brain tissue, and then applies mathematical algorithms to interpret that information.
"CHS is based on measurements of brain hemodynamics that are interpreted according to unique algorithms that generate measures of cerebral blood flow, blood volume and oxygen consumption," says Fantini. "This technique can be used not only to assess brain diseases but also to study the blood flow and how it is regulated in the healthy brain."
Tufts has licensed CHS on a non-exclusive basis to ISS, a Champaign, Ill.-based company that specializes in technology to measure hemoglobin concentration and oxygenation in brain and muscle tissue.
"Potentially the market for CHS is large as it encompasses several applications from the monitoring of cerebrovascular disorders to assessing neurological disorders," says Beniamino Barbieri, president of ISS. "It reminds me of the introduction of ultrasound technology at beginning of the seventies; nobody back then knew how to utilize the new technology and of course, nowadays, its applications are ubiquitous in any medical center."
How It Works
CHS uses laser diodes which emit NIR light that is delivered to the scalp by fiber optics. Light waves are absorbed by the blood vessels in the brain. Remaining light is reflected back to sensors, resulting in optical signals that oscillate with time as a result of the heartbeat, respiration, or other sources of variations in the blood pressure.
By analyzing the light signals with algorithms developed for this purpose, Fantini's model is able to evaluate blood flow and the way the brain regulates it--which is one marker for brain health.
CHS technology has been tested among patients undergoing hemodialysis at Tufts Medical Center. Published research reported a lower cerebral blood flow in dialysis patients compared with healthy patients. "Non-invasive ways to measure local changes in cerebral blood flow, particularly during periods of stress such as hemodialysis, surgeries, and in the setting of stroke, could have major implications for maintaining healthy brain function," says Daniel Weiner, M.D., a nephrologist at Tufts Medical Center (Tufts MC) and associate professor of medicine at Tufts University School of Medicine (TUSM), who is a member of the research team.
Josh Kornbluth, M.D., a neurologist at Tufts MC and associate professor of medicine at TUSM, is also working with Fantini to explore CHS's potential to assess the cerebrovascular state of patients who suffer traumatic brain injury or stroke. They hope to test CHS further among neurological critical care patients.
"Having data about local cerebral blood flow and whether it is properly regulated can allow us to more accurately develop individualized therapy and interventions instead of choosing a 'one size fits all' approach to traumatic brain injury, stroke, or subarachnoid hemorrhage," Kornbluth says.

No comments:

Post a Comment