Changing stroke rehab and research worldwide now.Time is Brain! trillions and trillions of neurons that DIE each day because there are NO effective hyperacute therapies besides tPA(only 12% effective). I have 523 posts on hyperacute therapy, enough for researchers to spend decades proving them out. These are my personal ideas and blog on stroke rehabilitation and stroke research. Do not attempt any of these without checking with your medical provider. Unless you join me in agitating, when you need these therapies they won't be there.

What this blog is for:

My blog is not to help survivors recover, it is to have the 10 million yearly stroke survivors light fires underneath their doctors, stroke hospitals and stroke researchers to get stroke solved. 100% recovery. The stroke medical world is completely failing at that goal, they don't even have it as a goal. Shortly after getting out of the hospital and getting NO information on the process or protocols of stroke rehabilitation and recovery I started searching on the internet and found that no other survivor received useful information. This is an attempt to cover all stroke rehabilitation information that should be readily available to survivors so they can talk with informed knowledge to their medical staff. It lays out what needs to be done to get stroke survivors closer to 100% recovery. It's quite disgusting that this information is not available from every stroke association and doctors group.

Wednesday, December 8, 2021

Self-Administered Gerocognitive Examination: longitudinal cohort testing for the early detection of dementia conversion

 

Is your doctor proactively testing for MCI? Or is s/he just doing the status quo of nothing? You have a good chance of getting dementia, hopefully your doctor has protocols to prevent that. 

Your risk of dementia, has your doctor told you of this?

1. A documented 33% dementia chance post-stroke from an Australian study?   May 2012.

2. Then this study came out and seems to have a range from 17-66%. December 2013.`    

3. A 20% chance in this research.   July 2013.

4. Dementia Risk Doubled in Patients Following Stroke September 2018 

The latest here:

Self-Administered Gerocognitive Examination: longitudinal cohort testing for the early detection of dementia conversion

 

This article has been updated

Abstract

Background

Significant cognitive changes as individuals’ age are not being identified in a timely manner, delaying diagnosis and treatments. Use of brief, multi-domain, self-administered, objective cognitive assessment tools may remove some barriers in assessing and identifying cognitive changes. We compared longitudinal Self-Administered Gerocognitive Examination (SAGE) test scores to non-self-administered Mini-Mental State Examination (MMSE) scores in 5 different diagnostic subgroups.

Methods

A cohort study evaluating annual rates of change was performed on 665 consecutive patients from Ohio State University Memory Disorders Clinic. Patients with at least two visits 6 months apart evaluated with SAGE and MMSE and classified according to standard clinical criteria as subjective cognitive decline (SCD), mild cognitive impairment (MCI), or Alzheimer’s disease (AD) dementia were included. The pattern of change in SAGE scores was compared to MMSE. One way and repeated measures ANOVA and linear regression models were used.

Results

Four hundred twenty-four individuals (40 SCD, 94 MCI non-converters to dementia, 70 MCI converters to dementia (49 to AD dementia and 21 to non-AD dementia), 220 AD dementia) met inclusion criteria. SAGE and MMSE scores declined respectively at annual rates of 1.91 points/year (p < 0.0001) and 1.68 points/year (p < 0.0001) for MCI converters to AD dementia, and 1.82 points/year (p < 0.0001) and 2.38 points/year (p < 0.0001) for AD dementia subjects. SAGE and MMSE scores remained stable for SCD and MCI non-converters. Statistically significant decline from baseline scores in SAGE occurred at least 6 months earlier than MMSE for MCI converters to AD dementia (14.4 vs. 20.4 months), MCI converters to non-AD dementia (14.4 vs. 32.9 months), and AD dementia individuals (8.3 vs. 14.4 months).

Conclusions

SAGE detects MCI conversion to dementia at least 6 months sooner than MMSE. Being self-administered, SAGE also addresses a critical need of removing some barriers in performing cognitive assessments. Limitations of our single-site cohort study include potential referral and sampling biases. Repetitively administering SAGE and identifying stability or decline may provide clinicians with an objective cognitive biomarker impacting evaluation and management choices.

Background

Cognitive complaints are common in older persons [1]. However, patients present to physicians an average of two to four years after definite cognitive symptoms begin [2,3,4,5,6]. Approximately two-thirds of patients have cognitive scores in dementia ranges when first assessed [5,6,7,8], suggesting that less severe cognitive symptoms may have been occurring for years. It is critical for providers to more easily recognize symptoms of brain dysfunction at the mild cognitive impairment (MCI) or early dementia stage [9,10,11].

MCI can be a prodromal stage of a degenerative dementia or caused by other conditions that may be treatable, modifiable, or reversible [12,13,14]. Patients diagnosed with MCI do not always progress to dementia. The conversion rate ranges from 21 to 61% in specialist settings followed for at least 3 years [15, 16]. A random-effects meta-analysis including studies from community-based settings demonstrated that the cumulative incidence for the development of dementia in individuals with MCI and those described as cognitively impaired without dementia, older than age 65, and followed for 2 years was 14.9% [17].

Early identification of MCI and dementia is enhanced greatly by brief (10 to 15 min), office-based, multi-domain objective cognitive assessments [18] including the Mini-Mental State Examination (MMSE) [19] and Self-Administered Gerocognitive Examination (SAGE) [20] to detect the degree, type, and changes over time of deficits. SAGE has been shown to be a reliable instrument for detecting cognitive impairment based on gold standard clinical and neuropsychological assessments (ROC AUC of 0.92, 95% specificity, and 79% sensitivity) [20]. SAGE is self-administered and can be taken at a person’s home, in a physician’s office, or virtually anywhere. It requires no special equipment—only pen and paper. The examinee fills out the test in ink without the assistance of others. If any questions are raised by the examinee regarding the test, they are simply told to “Do the best that you can.” Timely detection of cognitive impairment may result in earlier diagnosis and treatment use and lead to increased supervision of the individual. Self-administered tests like SAGE, easily given in any healthcare setting, and sensitive enough to discern those with MCI or early dementia, are few in number [20,21,22,23,24,25].

We retrospectively compared the utility of longitudinal SAGE test scores from a memory disorders clinic population in an 8-year study to MMSE test scores in 5 different diagnostic subgroups. We also describe the annual rate of change of SAGE and MMSE in different cognitive subgroups (subjective cognitive decline (SCD), MCI, dementia converters of all types, and Alzheimer’s disease (AD) dementia). We hypothesized that the test characteristics of the self-administered SAGE with its more challenging questions and more robust evaluation of executive abilities compared to the MMSE would have less of a ceiling effect and therefore a faster rate of decline in those with very mild cognitive impairments to be able to predict dementia conversion sooner than the MMSE.

No comments:

Post a Comment