Changing stroke rehab and research worldwide now.Time is Brain! trillions and trillions of neurons that DIE each day because there are NO effective hyperacute therapies besides tPA(only 12% effective). I have 523 posts on hyperacute therapy, enough for researchers to spend decades proving them out. These are my personal ideas and blog on stroke rehabilitation and stroke research. Do not attempt any of these without checking with your medical provider. Unless you join me in agitating, when you need these therapies they won't be there.

What this blog is for:

My blog is not to help survivors recover, it is to have the 10 million yearly stroke survivors light fires underneath their doctors, stroke hospitals and stroke researchers to get stroke solved. 100% recovery. The stroke medical world is completely failing at that goal, they don't even have it as a goal. Shortly after getting out of the hospital and getting NO information on the process or protocols of stroke rehabilitation and recovery I started searching on the internet and found that no other survivor received useful information. This is an attempt to cover all stroke rehabilitation information that should be readily available to survivors so they can talk with informed knowledge to their medical staff. It lays out what needs to be done to get stroke survivors closer to 100% recovery. It's quite disgusting that this information is not available from every stroke association and doctors group.

Sunday, December 19, 2021

Catecholamine-induced cardiotoxicity: A critical element in the pathophysiology of stroke-induced heart injury

 You don't want a heart injury after your stroke also so you better hope like hell that your doctors have a protocol to prevent that.

The latest here:

Catecholamine-induced cardiotoxicity: A critical element in the pathophysiology of stroke-induced heart injury

https://doi.org/10.1016/j.lfs.2021.120106Get rights and content

Abstract

Cerebrovascular diseases such as ischemic stroke, brain hemorrhage, and subarachnoid hemorrhage provoke cardiac complications such as heart failure, neurogenic stress-related cardiomyopathy and Takotsubo cardiomyopathy. With regards to the pathophysiology of stroke-induced heart injury, several mechanisms have been postulated to contribute to this complex interaction between brain and heart, including damage from gut dysbiosis, immune and systematic inflammatory responses, microvesicle- and microRNA-mediated vascular injury and damage from a surge of catecholamines. All these cerebrovascular diseases may trigger pronounced catecholamine surges through diverse ways, including stimulation of hypothalamic-pituitary adrenal axis, dysregulation of autonomic system, and secretion of adrenocorticotropic hormone. Primary catecholamines involved in this pathophysiological response include norepinephrine (NE) and epinephrine. Both are important neurotransmitters that connect the nervous system with the heart, leading to cardiac damage via myocardial ischemia, calcium (Ca2+) overload, oxidative stress, and mitochondrial dysfunction. In this review, we will aim to summarize the molecular mechanisms behind catecholamine-induced cardiotoxicity including Ca2+ overload, oxidative stress, apoptosis, cardiac hypertrophy, interstitial fibrosis, and inflammation. In addition, we will focus on how synchronization among these pathways evokes cardiotoxicity.

 

No comments:

Post a Comment