Changing stroke rehab and research worldwide now.Time is Brain! trillions and trillions of neurons that DIE each day because there are NO effective hyperacute therapies besides tPA(only 12% effective). I have 523 posts on hyperacute therapy, enough for researchers to spend decades proving them out. These are my personal ideas and blog on stroke rehabilitation and stroke research. Do not attempt any of these without checking with your medical provider. Unless you join me in agitating, when you need these therapies they won't be there.

What this blog is for:

My blog is not to help survivors recover, it is to have the 10 million yearly stroke survivors light fires underneath their doctors, stroke hospitals and stroke researchers to get stroke solved. 100% recovery. The stroke medical world is completely failing at that goal, they don't even have it as a goal. Shortly after getting out of the hospital and getting NO information on the process or protocols of stroke rehabilitation and recovery I started searching on the internet and found that no other survivor received useful information. This is an attempt to cover all stroke rehabilitation information that should be readily available to survivors so they can talk with informed knowledge to their medical staff. It lays out what needs to be done to get stroke survivors closer to 100% recovery. It's quite disgusting that this information is not available from every stroke association and doctors group.

Thursday, December 23, 2021

Circulating Soluble CD163: A Potential Predictor for the Functional Outcome of Acute Ischemic Stroke

 

What the fuck good does this prediction do for getting survivors recovered? Survivors don't want predictions of failure to recover. You tell them EXACT STROKE PROTOCOLS LEADING TO 100% RECOVERY. Anything less is useless.

Circulating Soluble CD163: A Potential Predictor for the Functional Outcome of Acute Ischemic Stroke

Houchao Sun1,2,3, Xiaogang Zhang2,3,4, Jingxi Ma2,3, Zhao Liu2,3, Yunwen Qi2,3, Li Fang2,3, Yongling Zheng2,3 and Zhiyou Cai1,2,3*
  • 1Department of Neurology, Chongqing Medical University, Chongqing, China
  • 2Department of Neurology, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, China
  • 3Chongqing Key Laboratory of Neurodegenerative Diseases, Chongqing, China
  • 4Chongqing Key Laboratory of Neurology, Department of Neurology, First Affiliated Hospital of Chongqing Medical University, Chongqing, China

Background: CD163 is a transmembrane glycoprotein receptor expressed on innate immune cells that sheds from the cell membrane and circulates as a soluble form (sCD163). This study aimed to investigate the circulating levels and clinical relevance of soluble CD163 (sCD163) in acute ischemic stroke (AIS).

Methods: This study recruited 300 patients with AIS and 78 healthy controls. The patients were followed up for 1 month to observe the functional outcomes. The neurological functions of the patients were assessed using the NIH Stroke Scale (NIHSS) and the modified Rankin Scale (mRS). The plasma concentrations of sCD163 at the baseline (patient admission) were determined by ELISA.

Results: We found that patients with AIS had significantly higher plasma sCD163 concentrations than the healthy control. Patients with high sCD163 concentrations had better functional outcomes than patients with low sCD163 concentrations. The plasma sCD163 concentrations were positively associated with the NIHSS scores and infarction volume at the baseline. The plasma sCD163 was positively associated with the improvement of the NIHSS scores but was negatively associated with the risk of poor functional outcomes during follow-up.

Conclusions: These findings indicate that circulating sCD163 is a potential biomarker that is associated with disease severity and the functional outcome of AIS.

Introduction

Stroke is one of the leading causes of death and disability worldwide (1). Biomarkers with the potential in identifying patients with a risk of having poor clinical outcomes are critical for aggressive monitoring and therapeutic interventions in these subjects. A panel of blood-based biomarkers is suggested to be predictive for the severity and prognosis of acute ischemic stroke (AIS) (2, 3).

The plasma membrane glycoprotein receptor CD163 is a member of the scavenger receptor cysteine-rich (SRCR) superfamily class B that is mostly expressed on monocytes and macrophages. CD163 could shed from cell membranes to release soluble CD163 (sCD163) upon stimulation by inflammatory stimuli (4). sCD163 has been suggested to be biomarkers of many diseases, such as infectious diseases (5), tumors (6), and autoimmune diseases (7). sCD163 is increased in patients with intracranial hemorrhage and is associated with the improvement of neurological functions by promoting hematoma absorption (8). AIS involves local immune responses that encompass brain resident microglia and monocytes infiltrating from the circulation (9). The CD163 induced anti-inflammatory effects of monocytic cells are suggested to be involved in the pathogenesis of AIS (10). Animal studies have demonstrated that CD163 is upregulated following AIS (11). However, the changes of circulating sCD163 in patients with AIS are unknown. Therefore, this study aims to investigate the levels and clinical relevance of sCD163 in patients with AIS.

More at link.

 

No comments:

Post a Comment