Abstract

White matter vasculature plays a major role in the pathophysiology of permanent neurological deficits following a stroke or progressive cognitive alteration related to small vessel disease. Thus, knowledge of the complex vascularization and functional aspects of the deep white matter territories is paramount to comprehend clinical manifestations of brain ischaemia.

This review provides a structured presentation of the existing knowledge of the vascularization of the human cerebral white matter from seminal historical studies to the current literature. First, we revisit the highlights of prenatal development of the endoparenchymal telencephalic vascular system that are crucial for the understanding of vessel organization in the adult. Second, we reveal the tangled history of debates on the existence, clinical significance and physiological role of leptomeningeal anastomoses. Then, we present how conceptions on white matter vascularization transitioned from the mixed ventriculopetal/ventriculofugal theory, in which a low-flow area was interposed in between concurrent arterial flows, to the purely ventriculopetal theory. The latter model explains variable white matter sensitivity to ischaemia by various organizations of ventriculopetal vessel terminals having different origin/length properties and interconnection patterns. Next, arteries supplying primarily the white matter are described according to their length and overall structure. Furthermore, the known distribution territories, to date, are studied in relation to primary anatomical structures of the human cerebral white matter, emphasizing the sparsity of the ‘ground truth’ data available in the literature. Finally, the implications for both large vessel occlusion and chronic small vessel disease are discussed, as well as the insights from neuroimaging.

All things considered, we identify the need for further research on deep white matter vascularization, especially regarding the arterial supply of white matter fibre tracts.