Changing stroke rehab and research worldwide now.Time is Brain! trillions and trillions of neurons that DIE each day because there are NO effective hyperacute therapies besides tPA(only 12% effective). I have 523 posts on hyperacute therapy, enough for researchers to spend decades proving them out. These are my personal ideas and blog on stroke rehabilitation and stroke research. Do not attempt any of these without checking with your medical provider. Unless you join me in agitating, when you need these therapies they won't be there.

What this blog is for:

My blog is not to help survivors recover, it is to have the 10 million yearly stroke survivors light fires underneath their doctors, stroke hospitals and stroke researchers to get stroke solved. 100% recovery. The stroke medical world is completely failing at that goal, they don't even have it as a goal. Shortly after getting out of the hospital and getting NO information on the process or protocols of stroke rehabilitation and recovery I started searching on the internet and found that no other survivor received useful information. This is an attempt to cover all stroke rehabilitation information that should be readily available to survivors so they can talk with informed knowledge to their medical staff. It lays out what needs to be done to get stroke survivors closer to 100% recovery. It's quite disgusting that this information is not available from every stroke association and doctors group.

Tuesday, June 21, 2022

Using a Supercomputer to Understand Synaptic Transmission

 Some of your synapses aren't working properly post stroke. What is your doctor doing to fix them? This is your doctor's responsibility to solve, don't let her/him weasel out of that responsibility.

Using a Supercomputer to Understand Synaptic Transmission

 

Summary: Researchers present an all-atom molecular dynamic simulation of synaptic vesicle fusion.

Source: Texas Advanced Computing Center

Let’s think for a second about thought—specifically, the physics of neurons in the brain.

This topic has been the lifelong interest of Jose Rizo-Rey, professor of Biophysics at the University of Texas Southwestern Medical Center.

Our brains have billions of nerve cells or neurons, and each neuron has thousands of connections to other neurons. The calibrated interactions of these neurons is what thoughts are made of, whether the explicit kind—a distant memory surfacing—or the taken-for-granted kind—our peripheral awareness of our surroundings as we move through the world.

“The brain is an amazing network of communications,” said Rizo-Rey. “When a cell gets excited by electrical signals, very fast synaptic vesicle fusion occurs. The neurotransmitters come out of the cell and bind to receptors on the synaptic side. That’s the signal and this process is very fast.”

How exactly these signals can occur so fast—less than 60 microseconds or millionths of a second—is the focus of intense study. So is the dysregulation of this process in neurons, which causes a host of neurological conditions, from Alzheimer’s to Parkinson’s disease.

Decades of research has led to a thorough understanding of the main protein players and the broad strokes of membrane fusion for synaptic transmission. Bernard Katz was awarded the 1970 Nobel Prize in Medicine in part for demonstrating that chemical synaptic transmission consists of a neurotransmitter-filled synaptic vesicle fusing with the plasma membrane at nerve endings and releasing its content into the opposing postsynaptic cell.

And Rizo-Rey’s longtime collaborator, Thomas Südhof, won the Nobel Prize in Medicine in 2013 for his studies of the machinery that mediates neurotransmitter release (many with Rizo-Rey as a co-author).

But Rizo-Rey says his goal is to understand the specific physics of how the activation process of thought occurs in much more detail. “If I can understand that, winning the Nobel Prize would just be a small reward,” he said.

Recently, using the Frontera supercomputer at the Texas Advanced Computing Center (TACC), one of the most powerful systems in the world, Rizo-Rey has been exploring this process, creating a multi-million atom model of the proteins, the membranes, and their environment, and setting them in motion virtually to see what happens, a process known as molecular dynamics.

Writing in eLife in June 2022, Rizo-Rey and collaborators presented all-atom molecular dynamics simulations of synaptic vesicle fusion, providing a glimpse at the primed state. The research shows a system where several specialized proteins are “spring-loaded,” awaiting only the delivery of calcium ions to trigger fusion.

“It’s ready to release, but it doesn’t,” he explained. “Why doesn’t it? It’s waiting for the calcium signal. Neurotransmission is about controlling fusion. You want to have the system ready to fuse, so when calcium comes in, it can happen very fast, but it’s not fusing yet.”This shows a computer generated image of a synaptic vesicle 
 
Initial configuration of the molecular dynamics simulations designed to investigate the nature of the primed state of synaptic vesicles. Credit: Jose Rizo-Rey, UT Southwestern Medical Center

The study represents a return to computational approaches for Rizo-Rey, who recalls using the original Cray supercomputer at the University of Texas at Austin in the early 1990s. He went on to use primarily experimental methods like nuclear magnetic resonance spectroscopy over the past three decades to study the biophysics of the brain.“Supercomputers weren’t powerful enough to resolve this problem of how transmission was occurring in the brain. So for a long time, I used other methods,” he said. “However, with Frontera, I can model 6 million atoms and really get a picture of what’s going on with this system.”Rizo-Rey’s simulations only cover the first few microseconds of the fusion process, but his hypothesis is that the act of fusion should happen in that time. “If I see how it’s starting, the lipids starting to mix, then I’ll ask for 5 million hours [the maximum time available] on Frontera,” he said, to capture the snap of the spring-loaded proteins and the step-by-step process by which the fusion and transmission happens.Rizo-Rey says the sheer amount of computation that can be harnessed today is unbelievable. “We have a supercomputer system here at the University of Texas Southwestern Medical Center. I can use up to 16 nodes,” he said. “What I did on Frontera, instead of a few months, would have taken 10 years.”Investing in basic research—and in the computing systems that support this type of research—is fundamental to the health and well-being of our nation, Rizo-Rey says.“This country was very successful because of basic research. Translation is important, but if you don’t have the basic science, you have nothing to translate.”

No comments:

Post a Comment