Changing stroke rehab and research worldwide now.Time is Brain! trillions and trillions of neurons that DIE each day because there are NO effective hyperacute therapies besides tPA(only 12% effective). I have 523 posts on hyperacute therapy, enough for researchers to spend decades proving them out. These are my personal ideas and blog on stroke rehabilitation and stroke research. Do not attempt any of these without checking with your medical provider. Unless you join me in agitating, when you need these therapies they won't be there.

What this blog is for:

My blog is not to help survivors recover, it is to have the 10 million yearly stroke survivors light fires underneath their doctors, stroke hospitals and stroke researchers to get stroke solved. 100% recovery. The stroke medical world is completely failing at that goal, they don't even have it as a goal. Shortly after getting out of the hospital and getting NO information on the process or protocols of stroke rehabilitation and recovery I started searching on the internet and found that no other survivor received useful information. This is an attempt to cover all stroke rehabilitation information that should be readily available to survivors so they can talk with informed knowledge to their medical staff. It lays out what needs to be done to get stroke survivors closer to 100% recovery. It's quite disgusting that this information is not available from every stroke association and doctors group.

Monday, May 27, 2024

Artificial intelligence to predict individualized outcome of acute ischemic stroke patients: The SIBILLA project

 I really wish you would do something useful like getting survivors recovered. This predicting failure to recover is ABSOLUTELY FUCKING USELESS!

Artificial intelligence to predict individualized outcome of acute ischemic stroke patients: The SIBILLA project

Abstract

Introduction:

Formulating reliable prognosis for ischemic stroke patients remains a challenging task. We aimed to develop an artificial intelligence model able to formulate in the first 24 h after stroke an individualized prognosis in terms of NIHSS.

Patients and methods:

Seven hundred ninety four acute ischemic stroke patients were divided into a training (597) and testing (197) cohort. Clinical and instrumental data were collected in the first 24 h. We evaluated the performance of four machine-learning models (Random Forest, K-Nearest Neighbors, Support Vector Machine, XGBoost) in predicting NIHSS at discharge both in terms of variation between discharge and admission (regressor approach) and in terms of severity class namely NIHSS 0–5, 6–10, 11–20, >20 (classifier approach). We used Shapley Additive exPlanations values to weight features impact on predictions.

Results:

XGBoost emerged as the best performing model. The classifier and regressor approaches perform similarly in terms of accuracy (80% vs 75%) and f1-score (79% vs 77%) respectively. However, the regressor has higher precision (85% vs 68%) in predicting prognosis of very severe stroke patients (NIHSS > 20). NIHSS at admission and 24 hours, GCS at 24 hours, heart rate, acute ischemic lesion on CT-scan and TICI score were the most impacting features on the prediction.

Discussion:

Our approach, which employs an artificial intelligence based-tool, inherently able to continuously learn and improve its performance, could improve care pathway and support stroke physicians in the communication with patients and caregivers.

Conclusion:

XGBoost reliably predicts individualized outcome in terms of NIHSS at discharge in the first 24 hours after stroke.
Graphical abstract

No comments:

Post a Comment