But ABSOLUTELY NOTHING HERE will get you recovered! No protocols written up for survivor use. Useless!
Upper Limb Recovery After Stroke Is Associated With Ipsilesional Primary Motor Cortical Activity: A Meta-Analysis
Isabelle Favre, MD; Thomas A. Zeffiro, MD, PhD; Olivier Detante, MD, PhD;
Alexandre Krainik, MD, PhD; Marc Hommel, MD; Assia Jaillard, MD, PhD
Background and Purpose
Although neuroimaging studies have revealed specific patterns of reorganization in the
sensorimotor control network after stroke, their role in recovery remains unsettled. To review the existing evidence
systematically, we performed activation likelihood estimation meta-analysis of functional neuroimaging studies
investigating upper limb movement-related brain activity after stroke.
Methods—Twenty-four studies using sensorimotor tasks in standardized coordinates were included, totaling 255 patients
and 145 healthy controls. Across the entire brain, we compared task-related activity patterns in good and poor recovery
and assessed the magnitude of spatial shifts in sensorimotor activity in cortical motor areas after stroke.
Results—When compared with healthy controls, patients showed higher activation likelihood estimation values in
contralesional primary motor soon after stroke that abated with time, but were not related to motor outcome. The observed
activity changes were consistent with restoration of typical interhemispheric balance. In contrast, activation likelihood
estimation values in ipsilesional medial-premotor and primary motor cortex were associated with good outcome,
reorganization that may reflect vicarious processes associated with ventral activity shifts from BA4a to 4p. In the anterior
cerebellum, a novel finding was the association of poor recovery with increased vermal activity, possibly reflecting
behaviorally inadequate compensatory strategies engaging the fastigio-thalamo-cortical and corticoreticulospinal systems.
Conclusions—Activity in ipsilesional primary motor and medial-premotor cortices in chronic stroke signals good motor
recovery, whereas cerebellar vermis activity signals poor recovery. Functional MRI may be useful in identifying recovery
biomarkers. (Stroke. 2014;45:1077-1083.)
Key Words: biomarkers
◼
functional neuroimaging
◼
magnetic resonance imaging
◼
motor cortex
◼
positron-emission tomography
More at link.
No comments:
Post a Comment