Changing stroke rehab and research worldwide now.Time is Brain! trillions and trillions of neurons that DIE each day because there are NO effective hyperacute therapies besides tPA(only 12% effective). I have 523 posts on hyperacute therapy, enough for researchers to spend decades proving them out. These are my personal ideas and blog on stroke rehabilitation and stroke research. Do not attempt any of these without checking with your medical provider. Unless you join me in agitating, when you need these therapies they won't be there.

What this blog is for:

My blog is not to help survivors recover, it is to have the 10 million yearly stroke survivors light fires underneath their doctors, stroke hospitals and stroke researchers to get stroke solved. 100% recovery. The stroke medical world is completely failing at that goal, they don't even have it as a goal. Shortly after getting out of the hospital and getting NO information on the process or protocols of stroke rehabilitation and recovery I started searching on the internet and found that no other survivor received useful information. This is an attempt to cover all stroke rehabilitation information that should be readily available to survivors so they can talk with informed knowledge to their medical staff. It lays out what needs to be done to get stroke survivors closer to 100% recovery. It's quite disgusting that this information is not available from every stroke association and doctors group.

Wednesday, April 30, 2014

Stem Cells from Teeth Can Make Brain-like Cells

This can join the other 19 possibilities here: Which possibility is your doctor working on?
Scientists Create Stem Cells From a Drop of Blood 

 Stem Cells from Teeth Can Make Brain-like Cells
University of Adelaide researchers have discovered that stem cells taken from teeth can grow to resemble brain cells, suggesting they could one day be used in the brain as a therapy for stroke.
 
In the University's Center for Stem Cell Research, laboratory studies have shown that stem cells from teeth can develop and form complex networks of brain-like cells. Although these cells haven't developed into fully fledged neurons, researchers believe it's just a matter of time and the right conditions for it to happen.
 
"Stem cells from teeth have great potential to grow into new brain or nerve cells, and this could potentially assist with treatments of brain disorders, such as stroke," said Dr. Kylie Ellis, commercial development manager with the University's commercial arm, Adelaide Research & Innovation (ARI).
 
Ellis conducted this research as part of her Physiology Ph.D. studies at the University, before making the step into commercialization. The results of her work have been published in the journal Stem Cell Research & Therapy.
 
"The reality is, treatment options available to the thousands of stroke patients every year are limited," Ellis said. "The primary drug treatment available must be administered within hours of a stroke and many people don't have access within that timeframe, because they often can't seek help for some time after the attack.
 
"Ultimately, we want to be able to use a patient's own stem cells for tailor-made brain therapy that doesn't have the host rejection issues commonly associated with cell-based therapies. Another advantage is that dental pulp stem cell therapy may provide a treatment option available months or even years after the stroke has occurred," she said.
 
Ellis and her colleagues, Professors Simon Koblar, David O'Carroll and Stan Gronthos, have been working on a laboratory-based model for actual treatment in humans. As part of this research Ellis found that stem cells derived from teeth developed into cells that closely resembled neurons.
 
"We can do this by providing an environment for the cells that is as close to a normal brain environment as possible, so that instead of becoming cells for teeth they become brain cells," Ellis said. "What we developed wasn't identical to normal neurons, but the new cells shared very similar properties to neurons. They also formed complex networks and communicated through simple electrical activity, like you might see between cells in the developing brain."
 
This work with dental pulp stem cells opens up the potential for modelling many more common brain disorders in the laboratory, which could help in developing new treatments and techniques for patients.
 

No comments:

Post a Comment