Changing stroke rehab and research worldwide now.Time is Brain! trillions and trillions of neurons that DIE each day because there are NO effective hyperacute therapies besides tPA(only 12% effective). I have 523 posts on hyperacute therapy, enough for researchers to spend decades proving them out. These are my personal ideas and blog on stroke rehabilitation and stroke research. Do not attempt any of these without checking with your medical provider. Unless you join me in agitating, when you need these therapies they won't be there.

What this blog is for:

My blog is not to help survivors recover, it is to have the 10 million yearly stroke survivors light fires underneath their doctors, stroke hospitals and stroke researchers to get stroke solved. 100% recovery. The stroke medical world is completely failing at that goal, they don't even have it as a goal. Shortly after getting out of the hospital and getting NO information on the process or protocols of stroke rehabilitation and recovery I started searching on the internet and found that no other survivor received useful information. This is an attempt to cover all stroke rehabilitation information that should be readily available to survivors so they can talk with informed knowledge to their medical staff. It lays out what needs to be done to get stroke survivors closer to 100% recovery. It's quite disgusting that this information is not available from every stroke association and doctors group.

Monday, May 11, 2015

Efficacy of virtual reality-based intervention on balance and mobility disorders post-stroke: a scoping review

What will your doctor use from this to update your stroke protocols to make sure you get closer to 100% recovery?
http://www.jneuroengrehab.com/content/12/1/46


Anuja Darekar12*, Bradford J McFadyen3, Anouk Lamontagne12 and Joyce Fung12

1 School of Physical and Occupational Therapy, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
2 Feil and Oberfeld Research Center, Jewish Rehabilitation Hospital, Research site of the Montreal Centre for Interdisciplinary Research in Rehabilitation (CRIR), Laval, Quebec, Canada
3 Centre for Interdisciplinary Research in Rehabilitation and Social Integration (CIRRIS) at the Quebec Rehabilitation Institute and Department of Rehabilitation, Faculty of Medicine, Laval University, Quebec, Canada
For all author emails, please log on.

Journal of NeuroEngineering and Rehabilitation 2015, 12:46  doi:10.1186/s12984-015-0035-3
The electronic version of this article is the complete one and can be found online at: http://www.jneuroengrehab.com/content/12/1/46

Received:11 August 2014
Accepted:13 April 2015
Published:10 May 2015
© 2015 Darekar et al.; licensee BioMed Central.

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Abstract

Rehabilitation interventions involving virtual reality (VR) technology have been developed for the promotion of functional independence post stroke. A scoping review was performed to examine the efficacy of VR-based interventions on balance and mobility disorders post stroke. Twenty-four articles in the English language examining VR game-based interventions and outcomes directed at balance and mobility disorders were included. Various VR systems (customized and commercially available) were used as rehabilitation tools. Outcome measures included laboratory and clinical measures of balance and gait. Outcome measures of dynamic balance showed significant improvements following VR-based interventions as compared to other interventions. Further, it was observed that VR-based intervention may have favorable effects in improving walking speed and the ability to deal with environmental challenges, which may also facilitate independent community ambulation. VR-based therapy thus has the potential to be a useful tool for balance and gait training for stroke rehabilitation. Utilization of motor learning principles related to task-related training may have been an important factor leading to positive results. Other principles such as repetition, feedback etc. were used in studies but were not explored explicitly and may need to be investigated to further improve the strength of results. Lastly, robust study designs with appropriate attention towards the intensity and dose-response aspects of VR training, clear study objectives and suitable outcomes would further aid in determining evidence-based efficacy for VR game-based interventions in the future.
Keywords:
Balance deficits; Cerebrovascular accident; Gait; Gait retraining; Game-based rehabilitation; Physiotherapy; Posture; Rehabilitation; Stroke; Virtual reality

Introduction

Although the length of in-hospital stay following an episode of stroke has consistently decreased [1]-[3], many individuals return home with residual deficits. Balance and gait deficits are commonly observed in this population, leading to reduced ambulatory activity [4], limitations in activities of daily living and community participation [5],[6], physical inactivity and subsequent deterioration in quality of life [7],[8]. Therefore, rehabilitation efforts geared towards improving balance and mobility are important to facilitate functional independence and optimize community ambulation and participation. One of the promising intervention tools that is sought to facilitate this goal is virtual reality (VR) technology.
VR consists of a range of technologies that can be used to artificially generate sensory information in the form of a virtual environment (VE) that is interactive and perceived as similar to the real world [9],[10]. Since VEs are interactive and game-like, they encourage active exploration, enhance engagement and provide motivation and enjoyment, thus allowing longer exercise sessions and improved treatment adherence [11]-[13]. VEs can be designed to resemble real-life scenarios including those encountered in the community [9],[14]. It is not feasible to physically replicate realistic, community scenarios in the clinic or to safely train patients in the community. VR thus affords therapists with the unique opportunity to expose and train patients in these scenarios in a risk-free, graded manner, while providing intensive training and multi-sensory feedback [15],[16]. These and other factors make VR-based intervention a useful adjunct or alternative to conventional therapy in re-training balance and gait dysfunctions post stroke. A review of the literature to explore the effect of VR-based interventions in re-training balance and gait and promoting independent community ambulation in this population is therefore important.
Several systematic reviews [17],[18], meta-analyses [19],[20] and a Cochrane review [21] have been undertaken to review the utility of VR technologies in retraining post-stroke individuals. Most of these reviews (with one exception [20]) had broader scopes of investigation and included upper limb retraining and/or cognitive rehabilitation. Further, these reviews considered only stronger study designs such as randomized controlled trials (RCT) for inclusion and thereby overlooked studies with different designs. We were, however, interested in examining the evidence on VR interventions on a targeted area (balance and gait post-stroke), with a broader and more flexible inclusion criteria as allowed in scoping reviews [22]. This allowed us to explore the added evidence to identify aspects of VR-based intervention that may prove useful in the treatment of balance and gait dysfunctions post-stroke. Further, we were interested in exploring with this scoping review, the utility of VR-based interventions in enhancing abilities required for community ambulation.
Community ambulation entails independent mobility outside the home [6] and involves dealing with environmental challenges such as low light, uneven terrain, external physical load, traffic, obstacles, time constraints etc. [23]. Various studies define diverse criteria for successful community ambulation [24]. For this review, we used one of the following criteria to identify results predictive of independent community ambulation:
1) post training gait speed ≥ 0.8 m/s, 2) functional ambulation category (FAC) of 5 (independent community ambulator) [25], 3) gait outcomes recorded in the community and, 4) outcomes related to negotiation of the environmental challenges (such as slope walking, obstacle negotiation etc.) [23].
The objectives of this scoping review were, therefore, to appraise the current state of information about the effects of VR intervention on balance and gait in post-stroke individuals and to explore the utility of VR-based interventions in facilitating independent community ambulation. The scoping review was conducted using the framework of Arksey and O’Malley [22], described in greater detail by Levac et al. [26].

No comments:

Post a Comment