$29.95 / €24.95 / £19.95 *
* Final gross prices may vary according to local VAT.
Get Access

Abstract

Post stroke rehabilitation consumes a huge amount of health care resources in terms of costs related to hospital and home assistance. Recently, robot-assisted rehabilitation has been adapted to support physiotherapists in providing high-intensity and repetitive rehabilitation sessions. It has been observed that robotics offers an objective and reliable instrumented tool to monitor patient’s progress and accurately assess their motor function. Each finger is attached to an instrumented mechanism which allowing force control and a mostly linear displacement. This paper presents a novel finger rehabilitation approach for acute paralyzed stroke survivors using a wearable robotic interface for hand motor function recovery. The device designed based on biomechanics measurements, able to assist the subject in opening and closing movements. It capable to adapt with various hand shapes and finger sizes. Main features of the interface include a differential system, and a lead screw mechanism which allows independent movement of the five fingers with actuators. The device is safe, easily transportable, and offers multiple training possibilities. The prototype deployment was carried out to determine the requirements for a finger rehabilitation device, the design and characterization of the complete system. Offering ease of use and affordability, the device has great potential to be deployed for individualized rehabilitation session for patients who have to undergo therapy in their home.