Changing stroke rehab and research worldwide now.Time is Brain! trillions and trillions of neurons that DIE each day because there are NO effective hyperacute therapies besides tPA(only 12% effective). I have 523 posts on hyperacute therapy, enough for researchers to spend decades proving them out. These are my personal ideas and blog on stroke rehabilitation and stroke research. Do not attempt any of these without checking with your medical provider. Unless you join me in agitating, when you need these therapies they won't be there.

What this blog is for:

My blog is not to help survivors recover, it is to have the 10 million yearly stroke survivors light fires underneath their doctors, stroke hospitals and stroke researchers to get stroke solved. 100% recovery. The stroke medical world is completely failing at that goal, they don't even have it as a goal. Shortly after getting out of the hospital and getting NO information on the process or protocols of stroke rehabilitation and recovery I started searching on the internet and found that no other survivor received useful information. This is an attempt to cover all stroke rehabilitation information that should be readily available to survivors so they can talk with informed knowledge to their medical staff. It lays out what needs to be done to get stroke survivors closer to 100% recovery. It's quite disgusting that this information is not available from every stroke association and doctors group.

Sunday, August 16, 2015

Early prediction of long-term upper limb spasticity after stroke

Precisely what the hell is your doctor going to do with this knowledge to make sure YOU don't get upper limb spasticity? I bet nothing is the answer.

Early prediction of long-term upper limb spasticity after stroke


Part of the SALGOT study

  1. Katharina Stibrant Sunnerhagen , MD, PhD
  1. Correspondence to Dr. Opheim: arve.opheim@neuro.gu.se
  1. Neurology 10.1212/WNL.0000000000001908
  1. Also available:
  2. Data Supplement
  3. Accompanying Comment

Abstract

Objective: To identify predictors and the optimal time point for the early prediction of the presence and severity of spasticity in the upper limb 12 months poststroke.
Methods: In total, 117 patients in the Gothenburg area who had experienced a stroke for the first time and with documented arm paresis day 3 poststroke were consecutively included. Assessments were made at admission and at 3 and 10 days, 4 weeks, and 12 months poststroke. Upper limb spasticity in elbow flexion/extension and wrist flexion/extension was assessed with the modified Ashworth Scale (MAS). Any spasticity was regarded as MAS ≥1, and severe spasticity was regarded as MAS ≥2 in any of the muscles. Sensorimotor function, sensation, pain, and joint range of motion in the upper limb were assessed with the Fugl-Meyer assessment scale, and, together with demographic and diagnostic information, were included in both univariate and multivariate logistic regression analysis models. Seventy-six patients were included in the logistic regression analysis.
Results: Sensorimotor function was the most important predictor both for any and severe spasticity 12 months poststroke. In addition, spasticity 4 weeks poststroke was a significant predictor for severe spasticity. The best prediction model for any spasticity was observed 10 days poststroke (85% sensitivity, 90% specificity). The best prediction model for severe spasticity was observed 4 weeks poststroke (91% sensitivity, 92% specificity).
Conclusions: Reduced sensorimotor function was the most important predictor both for any and severe spasticity, and spasticity could be predicted with high sensitivity and specificity 10 days poststroke.

No comments:

Post a Comment