Changing stroke rehab and research worldwide now.Time is Brain! trillions and trillions of neurons that DIE each day because there are NO effective hyperacute therapies besides tPA(only 12% effective). I have 523 posts on hyperacute therapy, enough for researchers to spend decades proving them out. These are my personal ideas and blog on stroke rehabilitation and stroke research. Do not attempt any of these without checking with your medical provider. Unless you join me in agitating, when you need these therapies they won't be there.

What this blog is for:

My blog is not to help survivors recover, it is to have the 10 million yearly stroke survivors light fires underneath their doctors, stroke hospitals and stroke researchers to get stroke solved. 100% recovery. The stroke medical world is completely failing at that goal, they don't even have it as a goal. Shortly after getting out of the hospital and getting NO information on the process or protocols of stroke rehabilitation and recovery I started searching on the internet and found that no other survivor received useful information. This is an attempt to cover all stroke rehabilitation information that should be readily available to survivors so they can talk with informed knowledge to their medical staff. It lays out what needs to be done to get stroke survivors closer to 100% recovery. It's quite disgusting that this information is not available from every stroke association and doctors group.

Wednesday, March 16, 2016

Ipsilesional anodal tDCS enhances the functional benefits of rehabilitation in patients after stroke

You'll have to ask your doctor what ipsilesional and anodal mean since this was obviously not written with laypersons in mind. Not having patients with stroke in the primary cortex seems like cherry picking to a degree that this research is worthless Who approved such research? Stupidity reigns once again.

Ipsilesional anodal tDCS enhances the functional benefits of rehabilitation in patients after stroke

Science Translational Medicine  16 Mar 2016:
Vol. 8, Issue 330, pp. 330re1
DOI: 10.1126/scitranslmed.aad5651
You are currently viewing the abstract.
View Full Text

Stimulating motor recovery in stroke

Rehabilitation of movement after stroke requires repeated practice and involves learning and brain changes. In a new study, Allman et al. tested whether delivering brain stimulation during a 9-day course of hand and arm training improved movement in patients after stroke. The authors found greater improvements in movement in patients who received real compared to sham (placebo) brain stimulation. Better scores in patients who received real stimulation were still present 3 months after training ended. These findings suggest that brain stimulation could be added to rehabilitative training to improve outcomes in stroke patients.

Abstract

Anodal transcranial direct current stimulation (tDCS) can boost the effects of motor training and facilitate plasticity in the healthy human brain. Motor rehabilitation depends on learning and plasticity, and motor learning can occur after stroke. We tested whether brain stimulation using anodal tDCS added to motor training could improve rehabilitation outcomes in patients after stroke. We performed a randomized, controlled trial in 24 patients at least 6 months after a first unilateral stroke not directly involving the primary motor cortex. Patients received either anodal tDCS (n = 11) or sham treatment (n = 13) paired with daily motor training for 9 days. We observed improvements that persisted for at least 3 months post-intervention after anodal tDCS compared to sham treatment on the Action Research Arm Test (ARAT) and Wolf Motor Function Test (WMFT) but not on the Upper Extremity Fugl-Meyer (UEFM) score. Functional magnetic resonance imaging (MRI) showed increased activity during movement of the affected hand in the ipsilesional motor and premotor cortex in the anodal tDCS group compared to the sham treatment group. Structural MRI revealed intervention-related increases in gray matter volume in cortical areas, including ipsilesional motor and premotor cortex after anodal tDCS but not sham treatment. The addition of ipsilesional anodal tDCS to a 9-day motor training program improved long-term clinical outcomes relative to sham treatment in patients after stroke.

No comments:

Post a Comment