Changing stroke rehab and research worldwide now.Time is Brain! trillions and trillions of neurons that DIE each day because there are NO effective hyperacute therapies besides tPA(only 12% effective). I have 523 posts on hyperacute therapy, enough for researchers to spend decades proving them out. These are my personal ideas and blog on stroke rehabilitation and stroke research. Do not attempt any of these without checking with your medical provider. Unless you join me in agitating, when you need these therapies they won't be there.

What this blog is for:

My blog is not to help survivors recover, it is to have the 10 million yearly stroke survivors light fires underneath their doctors, stroke hospitals and stroke researchers to get stroke solved. 100% recovery. The stroke medical world is completely failing at that goal, they don't even have it as a goal. Shortly after getting out of the hospital and getting NO information on the process or protocols of stroke rehabilitation and recovery I started searching on the internet and found that no other survivor received useful information. This is an attempt to cover all stroke rehabilitation information that should be readily available to survivors so they can talk with informed knowledge to their medical staff. It lays out what needs to be done to get stroke survivors closer to 100% recovery. It's quite disgusting that this information is not available from every stroke association and doctors group.

Monday, August 27, 2018

Psychedelics can promote neural plasticity in the prefrontal cortex and expand pathways for mental health


With your 23% chance of stroke survivors getting PTSD, Hopefully your doctor is already using it for this.  I think survivors need this type of neural plasticity so hopefully your doctor is following this carefully.

Ecstasy Was Just Labelled a 'Breakthrough Therapy' For PTSD by The FDA August 2017


Psychedelics can promote neural plasticity in the prefrontal cortex and expand pathways for mental health


___
Psychedelics in Neurology: Potential for Improving Neuroplasticity (NeurologyTimes):
Back in the 1950s, research was proving that psychedelic agents could be effective in the treatment of various neuropsychiatric disorders. Unfortunately, just as science was exploring their beneficial effects, the counterculture was exploring and embracing their effects. Slowly but surely, psychedelics were associated with rebellious youth and the tumultuous anti-war movement. As a result, the government shut down most of the research.
The 1990s saw renewed interest in psychedelic compounds as a means to address neuropsychiatric disorders. Research explored the benefits of MDMA and ketamine to treat mood disorders and posttraumatic stress disorder. Now, a new study sheds even more light on the promise these agents might provide.
Neurology Times invited corresponding author David E Olson, PhD, to discuss the study, “Psychedelics Promote Structural and Functional Neural Plasticity,” which appeared in the June issue of Cell Reports…
NT: What should clinicians take away from this research? What does this mean for the field?
Dr Olson: I’m hopeful that modern research on ketamine and psychedelics will lead to new and more effective strategies for treating mood and anxiety disorders that involve promoting neural plasticity in the prefrontal cortex. We have to think of depression and related diseases as disorders of neural circuits rather than “chemical imbalances.” Plasticity-promoting compounds are one possible method for repairing the circuits that are damaged in diseases like depression and posttraumatic stress disorder.”

The Study:

Psychedelics Promote Structural and Functional Neural Plasticity (Cell Reports). From the abstract:
  • Atrophy of neurons in the prefrontal cortex (PFC) plays a key role in the pathophysiology of depression and related disorders. The ability to promote both structural and functional plasticity in the PFC has been hypothesized to underlie the fast-acting antidepressant properties of the dissociative anesthetic ketamine. Here, we report that, like ketamine, serotonergic psychedelics are capable of robustly increasing neuritogenesis and/or spinogenesis both in vitro and in vivo. These changes in neuronal structure are accompanied by increased synapse number and function, as measured by fluorescence microscopy and electrophysiology. The structural changes induced by psychedelics appear to result from stimulation of the TrkB, mTOR, and 5-HT2A signaling pathways and could possibly explain the clinical effectiveness of these compounds. Our results underscore the therapeutic potential of psychedelics and, importantly, identify several lead scaffolds for medicinal chemistry efforts focused on developing plasticity-promoting compounds as safe, effective, and fast-acting treatments for depression and related disorders.

The Study in Context:


No comments:

Post a Comment