Sound good, but will it ever get to your stroke hospital? Do you even have a research analyst whose only job is to evaluate research and create new interventions for stroke patients? If your hospital doesn't have such a person you don't have a functioning stroke hospital.
Effects of Balance Exercise Assist Robot training for patients with hemiparetic stroke: a randomized controlled trial
Journal of NeuroEngineering and Rehabilitation volume 19, Article number: 12 (2022)
Abstract
Background
Robot-assisted rehabilitation for patients with stroke is promising. However, it is unclear whether additional balance training using a balance-focused robot combined with conventional rehabilitation programs supplements the balance function in patients with stroke. The purpose of this study was to compare the effects of Balance Exercise Assist Robot (BEAR) training combined with conventional inpatient rehabilitation training to those of conventional inpatient rehabilitation only in patients with hemiparetic stroke. We also aimed to determine whether BEAR training was superior to intensive balance training.
Methods
This assessor-blinded randomized controlled trial included 60 patients with first-ever hemiparetic stroke, admitted to rehabilitation wards between December 2016 and February 2019. Patients were randomly assigned to one of three groups, robotic balance training and conventional inpatient rehabilitation (BEAR group), intensive balance training and conventional inpatient rehabilitation (IBT group), or conventional inpatient rehabilitation-only (CR group). The intervention duration was 2 weeks, with assessments conducted pre- and post-intervention, and at 2 weeks follow-up. The primary outcome measure was a change in the Mini-Balance Evaluation Systems Test (Mini-BESTest) score from baseline.
Results
In total, 57 patients completed the intervention, and 48 patients were evaluated at the follow-up. Significant improvements in Mini-BESTest score were observed in the BEAR and IBT groups compared with in the CR group post-intervention and after the 2-week follow-up period (P < 0.05).
Conclusions
The addition of balance exercises using the BEAR alongside conventional inpatient rehabilitation improved balance in patients with subacute stroke.
Trial registration
https://www.umin.ac.jp/ctr; Unique Identifier: UMIN000025129. Registered on 2 December 2016.
Background
Balance can be defined as the ability to maintain and restore the center of gravity line when the base of support continuously changes [1]. Balance control involves different underlying systems, including anticipatory postural adjustments, postural responses, sensory orientation, and balance during gait [2]. Balance issues are frequently observed in patients with stroke and are closely related to mobility [3] and an increased risk of falling [4]. Among the various types of balance rehabilitation for patients with stroke [5], robot technology has gained attention as a potentially more efficient intervention. Importantly, repetition of task-specific activities for patients with stroke is effective in improving functional ability [6]. In this context, robots are considered to have great potential because of their strength in facilitating repetitive tasks. As a form of robotic intervention, robot-assisted gait training has been widely known and reported to improve walking ability [7] and balance [8, 9]. Considering task specificity, the use of a robots specialized in balance training is desirable; however, few studies assessing the usefulness of robot-assisted training, specifically focused on balance, have been undertaken. Notably, the Balance Exercise Assist Robot (BEAR, TOYOTA Motor Corporation, Aichi, Japan) is specialized in balance training [10]. The BEAR is a stand-up robot integrated with a video game that uses information such as velocity and body gradients obtained from a sensing device to adjust the training regime, and is classified as a surface-, mobile-, or platform-type robot [11]. Studies using the BEAR for patients with central nervous system disorders [10] and older adults with frailty [12] have reported improvements in dynamic balance ability and lower extremity muscle strength after training. However, to the best of our knowledge, the effectiveness of BEAR training compared with that of conventional balance training for patients with stroke has not been investigated.
Reportedly, balance training, including reaching movements and weight shifting, adjustment of motor responses to changes in body movements, and strengthening of lower limb muscle strength, is an important form of exercise therapy for balance improvement in patients with stroke [13, 14]. However, importantly, it is unclear whether additional balance training in combination with conventional rehabilitation programs supplements the balance function in patients with stroke [15]. Although a recent meta-analysis that included studies with homogeneous clinical outcomes [16] found a positive effect of additional balance exercises on balance function in patients with stroke, mixed results prevent confirmation of the efficacy of additional balance training. For example, while several randomized controlled trials found that additional balance exercises had no effect on balance function [17,18,19], other randomized controlled trials [20,21,22,23] reported the positive effects of additional training on balance function in patients with stroke. Furthermore, no study has examined the effectiveness of additional balance training on balance function using a balance-focused robot.
Therefore, we aimed to determine the effect of BEAR training on balance in combination with conventional inpatient rehabilitation training compared to the effects of conventional inpatient rehabilitation alone in patients with hemiparetic stroke. Moreover, we aimed to determine whether BEAR training was superior to dose-matched supervised intensive balance training.
More at link.
No comments:
Post a Comment